ppo-LunarLander-v2 / config.json
smatt92's picture
Upload PPO LunarLander-v2 trained agent
49228c2 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e12ff6faa70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e12ff6fab00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e12ff6fab90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e12ff6fac20>", "_build": "<function ActorCriticPolicy._build at 0x7e12ff6facb0>", "forward": "<function ActorCriticPolicy.forward at 0x7e12ff6fad40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e12ff6fadd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e12ff6fae60>", "_predict": "<function ActorCriticPolicy._predict at 0x7e12ff6faef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e12ff6faf80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e12ff6fb010>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e12ff6fb0a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e1307896080>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1715055796902079776, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAkvbsf9JC7GFequ1QCTzyiRso8hPgzvQAAgD8AAIA/GlXqvcOtDLpuJQW0NI0pLj0o67oekaYzAACAPwAAgD+eppK+Z+89P4JHJb0iheS+gYj1vmCyED0AAAAAAAAAAEAR6j3+XKo97UPbOwbvYb4rEKU8WK9sPQAAAAAAAAAAM4X6PHtqsboSQvo7LEvVuDVMcTo2HsW3AACAPwAAgD+AYBA9HAQdPb0srb0MdZG+W28bvucxRb0AAAAAAAAAACbeY777Dwk/MvwwPoqrs77jFgy+PVvbPQAAAAAAAAAAs3MVPTOaSz9qnsW9pmmrvhpEsz237aW9AAAAAAAAAAAAzSa90yQfPznJNb2jNru+x5fSvSXjn70AAAAAAAAAADO1ST1fMz4+UkYcvqKwr74TCkq9xm9LOwAAAAAAAAAAS2ngvtuqTT8qjPE9elMWv6hC9L4Fmj4+AAAAAAAAAAAQcI6+Wt15vXNd2L0xXZu8epLUPk0sWT0AAIA/AACAP2a13D23XZg/QXuePhMGAr+NLCU+u2EHPgAAAAAAAAAAJhCwvVBB0z4araY+5LCpvswtwbs/ExM+AAAAAAAAAACaCJK9ro+gOfJNULMsP2Kvv9HfOnPQwjMAAIA/AACAP5ruPz2OHsU9CB1Uvkn5fL6yOzC8ihD4vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEm8m4RVZOMAWyUS9yMAXSUR0CfPprGR3eOdX2UKGgGR0BxzIYVIqb0aAdL1mgIR0CfPsphWo3rdX2UKGgGR0By9wXgtOEeaAdL9WgIR0CfPw9WZJCjdX2UKGgGR0BxUWcAiml7aAdL5WgIR0CfPzsFMZgpdX2UKGgGR0ByGsqwyIpIaAdLzWgIR0CfQA8pCrtFdX2UKGgGR0BxvuwNb1RMaAdNDAFoCEdAn0AY3R5TqHV9lChoBkdAcbWnaWX1J2gHS+5oCEdAn0CF4C6pYXV9lChoBkdAcFNYmb9ZR2gHS+NoCEdAn0GCwGGEf3V9lChoBkdAbwmtzS1E3WgHS9poCEdAn0HyTdLxqnV9lChoBkdAcrmhakhzNmgHS99oCEdAn0ILCJoCdXV9lChoBkdAcivO1OTJQ2gHS+1oCEdAn0LELH+6y3V9lChoBkdAcTREaVD8cmgHS+loCEdAn0LXuiN83XV9lChoBkdAcP1n3ta6jGgHS+RoCEdAn0L6OPvKEHV9lChoBkdAcC63fyf+TGgHS9xoCEdAn0MkGmk30nV9lChoBkdAcy9Fr2xptmgHTQMBaAhHQJ9DcmXw9aF1fZQoaAZHQG2N6+nIhhZoB00MAWgIR0CfRDP8Q7LddX2UKGgGR0Bx+IjRlYlqaAdL82gIR0CfRDfoA4n4dX2UKGgGR0Bwe3NcGC7LaAdL72gIR0CfRFc2BJ7LdX2UKGgGR0BM2Qfp2U0OaAdLtmgIR0CfRHNTcZccdX2UKGgGR0Bu16xmkFfRaAdL6WgIR0CfRIPhybQUdX2UKGgGR0BwbEyVObiIaAdL62gIR0CfRL32EkB0dX2UKGgGR0Byd/SPU8V6aAdL4WgIR0CfRVcIqsltdX2UKGgGR0BxaiAnUlRhaAdNBgFoCEdAn0aXG0eEI3V9lChoBkdAcfo+az/p+2gHS+loCEdAn0bnta6jFnV9lChoBkdAc2rdZ7ojfWgHS91oCEdAn0cQDNhVl3V9lChoBkdAcgapWV/tpmgHS+BoCEdAn0c4rSVnmXV9lChoBkdAb3Lgm7aqTGgHS9doCEdAn0e5IUahpXV9lChoBkdAcEHZCOWBz2gHS/FoCEdAn0iQUDdP+HV9lChoBkdAcTuhK15SnGgHTQcBaAhHQJ9JC79Q40d1fZQoaAZHQHLouW4Vh1FoB0v7aAhHQJ9JENNJvpB1fZQoaAZHQHBCy+L3sX1oB0vwaAhHQJ9JIuxrzoV1fZQoaAZHQHAaCa3I+4doB0vmaAhHQJ9J2IznA7B1fZQoaAZHQHBS9uxbB45oB0v6aAhHQJ9KDU6PsAx1fZQoaAZHQHEdz2SMcZNoB0v3aAhHQJ9KLbDdgv11fZQoaAZHQHH0hoRIz31oB00EAWgIR0CfSmCgbp/xdX2UKGgGR0BzNOWldkauaAdL3mgIR0CfSogfU4JedX2UKGgGR0BwVgkY4yXVaAdL/WgIR0CfSpSS/0uldX2UKGgGR0BxH3Uz9CNTaAdNGAFoCEdAn0qwhfShJ3V9lChoBkdAc8uqwhW5pmgHS+BoCEdAn0u/iT+vQnV9lChoBkdAcS/1loUSI2gHS9JoCEdAn0vghGH58HV9lChoBkdAcWU/dZaFEmgHS9xoCEdAn0xCrtE5Q3V9lChoBkdAcO5XOGCZnmgHS9BoCEdAn0x7Wd3B6HV9lChoBkdAb4ZNsWO6umgHS/RoCEdAn0x/oNd7fHV9lChoBkdAcLP3K0UoKGgHS91oCEdAn02eCf6Gg3V9lChoBkdAclXPczqKQGgHS+RoCEdAn04uFL39JnV9lChoBkdAccBeokzGgmgHS+poCEdAn05V1jiGWXV9lChoBkdAcJez4k/r0WgHS/BoCEdAn06GEK3NLXV9lChoBkdAcwg+CsfaH2gHS89oCEdAn07GkrPMS3V9lChoBkdAbtrwuuieumgHS+RoCEdAn092Cdz4lHV9lChoBkdAcdYqjrRjSWgHS9xoCEdAn0+BdhRZU3V9lChoBkdAca+KLKmsNmgHTQIBaAhHQJ9Pnm3fAKx1fZQoaAZHQHGMD63y7PJoB00DAWgIR0CfT9f1pTMrdX2UKGgGR0BysU2Q4jrzaAdL/GgIR0CfUCsgMc6vdX2UKGgGR0BynLAGjbi7aAdNCgFoCEdAn1CqAjIJaHV9lChoBkdAcTEkE9t/F2gHS/FoCEdAn1GF3EAHV3V9lChoBkdAcr4kjX4CZGgHS/toCEdAn1GfHT7VKHV9lChoBkdAcbUb+tKZlWgHS/BoCEdAn1IphKDkEXV9lChoBkdAcJ0Ev0yxiWgHTQ0BaAhHQJ9S3Bk7Oml1fZQoaAZHQG1PIK+i8FpoB0vLaAhHQJ9S/IwM6R11fZQoaAZHQEUJcIqslsxoB0ukaAhHQJ9TebKA8Sx1fZQoaAZHQG5YsiB5HExoB006AWgIR0CfU8eKsMiKdX2UKGgGR0By77yJ9AooaAdNAwFoCEdAn1PUlzEJjXV9lChoBkdAcJ5DIzWPLmgHS+BoCEdAn1Pm0eEIxHV9lChoBkdAc1WcslLOA2gHS+toCEdAn1P0fcN6PnV9lChoBkdAcxKZtelbeWgHS99oCEdAn1UyxqwhXHV9lChoBkdAcZEVVghKUWgHS+hoCEdAn1WyFXaJynV9lChoBkdAcgRpGWldkmgHS+doCEdAn1X+JDVpbnV9lChoBkdAcR+VmjCYTmgHS+BoCEdAn1Y9Hxz7uXV9lChoBkdAc1FYtg8bJmgHTSsBaAhHQJ9WqmdiDul1fZQoaAZHQHI8JZ8rqdJoB0v5aAhHQJ9Xpdld1Md1fZQoaAZHQG4kfz8P4EhoB0vdaAhHQJ9X1LYf4h51fZQoaAZHQHF/SLuQZGdoB0vzaAhHQJ9Yldszl911fZQoaAZHQHEzNNvfj0doB0v0aAhHQJ9ZYN4JNTN1fZQoaAZHQHHHGIj4YaZoB0vcaAhHQJ9ZhH8TBZZ1fZQoaAZHQHBrRmPHT7VoB0vqaAhHQJ9a5/I8yN51fZQoaAZHQHG3dUbT+ehoB0v9aAhHQJ9a58Yyfth1fZQoaAZHQHJSFum78NxoB0vlaAhHQJ9bTpdKNAF1fZQoaAZHQHB5O3Ytg8doB0vlaAhHQJ9bZ9Tgl4V1fZQoaAZHQHGRrmU4aP1oB0v6aAhHQJ9b2xbB42V1fZQoaAZHQHJJgvYe1a5oB0v+aAhHQJ9cD1rZamp1fZQoaAZHQG86paA4GUxoB0v8aAhHQJ9dJE3Kji51fZQoaAZHQHDX/foA4n5oB0vraAhHQJ9diTFERap1fZQoaAZHQHHAnsTnJT5oB00FAWgIR0CfXcEit7rtdX2UKGgGR0BxKqaEzwc6aAdNCgFoCEdAn14Q8r7O3XV9lChoBkdAcF8US7GvOmgHS91oCEdAn15Jy+6AfHV9lChoBkdAb9y3DNyHVWgHS95oCEdAn15t1U2kz3V9lChoBkdAcYODeTFERmgHTR4BaAhHQJ9e/P2PDHh1fZQoaAZHQHJWKEeyRjloB0v+aAhHQJ9fv/kvK2d1fZQoaAZHQHMcdBF/hEVoB0v/aAhHQJ9gdtpEhJR1fZQoaAZHQHBncpb2UStoB0v5aAhHQJ9hXVLBbfR1fZQoaAZHQHKMwwXZXdVoB0v8aAhHQJ9h5F+d9Ul1fZQoaAZHQHHzz8+A3DNoB0vuaAhHQJ9iBxYJVsF1fZQoaAZHQHHAHfMwDeVoB00DAWgIR0CfYgNzr/sFdX2UKGgGR0Bx4AQEpy6uaAdNKgFoCEdAn2K6ttALRnV9lChoBkdAch/8274BWGgHTRQBaAhHQJ9i4WN3np11fZQoaAZHQHEBlHWjGkxoB0vuaAhHQJ9jJDohY/51fZQoaAZHQG8gHOjZcs1oB0vcaAhHQJ9jTqdH2AZ1fZQoaAZHQHCURRAKOT9oB0vfaAhHQJ9j9nqVyFR1fZQoaAZHQHKpBMzuWrxoB0vqaAhHQJ9j/5gw4851fZQoaAZHQHLmnmJWNm1oB0vdaAhHQJ9kvGS6lLx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 4096, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}