flowers-image-detection / definition.py
Sebastiano Maesano
initial commit
1c13d92
import torch.nn as nn
class FlowersImagesDetectionModel(nn.Module):
def __init__(self, num_classes):
super(FlowersImagesDetectionModel, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1)
self.fc1 = nn.Linear(128 * 28 * 28, 512) # Adjust the input size according to your image size after resizing
self.fc2 = nn.Linear(512, num_classes)
self.relu = nn.ReLU()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
def forward(self, x):
x = self.pool(self.relu(self.conv1(x)))
x = self.pool(self.relu(self.conv2(x)))
x = self.pool(self.relu(self.conv3(x)))
x = x.view(-1, 128 * 28 * 28) # Adjust this according to the output size of the convolutional layers
x = self.relu(self.fc1(x))
x = self.fc2(x)
return x