Update ffmpeg_handler.py
Browse files- ffmpeg_handler.py +3 -20
ffmpeg_handler.py
CHANGED
@@ -1,40 +1,23 @@
|
|
1 |
from typing import Dict, Any, List
|
2 |
-
from transformers import
|
3 |
import torch
|
4 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
5 |
-
#import io
|
6 |
|
7 |
-
|
8 |
-
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
|
10 |
|
11 |
class EndpointHandler:
|
12 |
def __init__(self, path=""):
|
13 |
-
#tokenizer = WhisperTokenizer.from_pretrained('openai/whisper-large', language="korean", task='transcribe')
|
14 |
-
#model = WhisperForConditionalGeneration.from_pretrained(path)
|
15 |
-
#self.tokenizer = WhisperTokenizer.from_pretrained(path)
|
16 |
-
#self.processor = WhisperProcessor.from_pretrained(path, language="korean", task='transcribe')
|
17 |
-
#processor = AutoProcessor.from_pretrained(path)
|
18 |
-
#self.pipe = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.feature_extractor, feature_extractor=processor.feature_extractor)
|
19 |
-
#feature_extractor = WhisperFeatureExtractor.from_pretrained('openai/whisper-large')
|
20 |
self.pipe = pipeline(task='automatic-speech-recognition', model=path)
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
# Move model to device
|
25 |
-
# self.model.to(device)
|
26 |
-
|
27 |
def __call__(self, data: Any) -> List[Dict[str, str]]:
|
28 |
-
print('==========NEW PROCESS=========')
|
29 |
|
30 |
inputs = data.pop("inputs", data)
|
31 |
audio_nparray = ffmpeg_read(inputs, 16000)
|
32 |
audio_tensor= torch.from_numpy(audio_nparray)
|
33 |
-
|
34 |
|
35 |
transcribe = self.pipe
|
36 |
transcribe.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids(language="ko", task="transcribe")
|
37 |
-
result = transcribe(audio_tensor)
|
38 |
-
|
39 |
|
40 |
return result
|
|
|
1 |
from typing import Dict, Any, List
|
2 |
+
from transformers import pipeline
|
3 |
import torch
|
4 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
|
|
5 |
|
6 |
+
#ffmpeg
|
|
|
7 |
|
8 |
|
9 |
class EndpointHandler:
|
10 |
def __init__(self, path=""):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
self.pipe = pipeline(task='automatic-speech-recognition', model=path)
|
12 |
|
|
|
|
|
|
|
|
|
|
|
13 |
def __call__(self, data: Any) -> List[Dict[str, str]]:
|
|
|
14 |
|
15 |
inputs = data.pop("inputs", data)
|
16 |
audio_nparray = ffmpeg_read(inputs, 16000)
|
17 |
audio_tensor= torch.from_numpy(audio_nparray)
|
|
|
18 |
|
19 |
transcribe = self.pipe
|
20 |
transcribe.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids(language="ko", task="transcribe")
|
21 |
+
result = transcribe(audio_tensor)
|
|
|
22 |
|
23 |
return result
|