|
from typing import Dict, Any, List |
|
from transformers import WhisperForConditionalGeneration, AutoProcessor, WhisperTokenizer, WhisperProcessor, pipeline, WhisperFeatureExtractor |
|
import torch |
|
from transformers.pipelines.audio_utils import ffmpeg_read |
|
|
|
|
|
|
|
|
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.pipe = pipeline(task='automatic-speech-recognition', model=path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def __call__(self, data: Any) -> List[Dict[str, str]]: |
|
print('==========NEW PROCESS=========') |
|
|
|
inputs = data.pop("inputs", data) |
|
audio_nparray = ffmpeg_read(inputs, 16000) |
|
audio_tensor= torch.from_numpy(audio_nparray) |
|
|
|
|
|
transcribe = pipeline(task="automatic-speech-recognition", model="vasista22/whisper-kannada-tiny") |
|
transcribe.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids(language="ko", task="transcribe") |
|
result = transcribe(audio_tensor) |
|
|
|
|
|
return result |