Translation
Transformers
PyTorch
Safetensors
mbart
text2text-generation
erzya
mordovian
Inference Endpoints
cointegrated commited on
Commit
60894da
1 Parent(s): a391bcd

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - myv
4
+ - ru
5
+ - fi
6
+ - de
7
+ - es
8
+ - en
9
+ - hi
10
+ - zh
11
+ - tr
12
+ - uk
13
+ - fr
14
+ - ar
15
+ tags:
16
+ - erzya
17
+ - mordovian
18
+ - translation
19
+ license: cc-by-sa-4.0
20
+ datasets:
21
+ - slone/myv_ru_2022
22
+ - yhavinga/ccmatrix
23
+ ---
24
+
25
+ This a model to translate texts to the Erzya language (`myv`, cyrillic script) from 11 other languages: `ru,fi,de,es,en,hi,zh,tr,uk,fr,ar`.
26
+
27
+ It is described in the paper "The first neural machine translation system for the Erzya language".
28
+
29
+ This model is based on [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) ([license here](https://tfhub.dev/google/LaBSE/2)), but with updated vocabulary and checkpoint:
30
+ - Added an extra language token `myv_XX` and 19K new BPE tokens for the Erzya language;
31
+ - Fine-tuned to translate from Erzya: first to Russian, then to all 11 languages.
32
+
33
+ The following code can be used to run translation using the model
34
+
35
+ ```Python
36
+ from transformers import MBartForConditionalGeneration, MBart50Tokenizer
37
+
38
+
39
+ def fix_tokenizer(tokenizer):
40
+ """ Add a new language token to the tokenizer vocabulary (this should be done each time after its initialization) """
41
+ old_len = len(tokenizer) - int('myv_XX' in tokenizer.added_tokens_encoder)
42
+ tokenizer.lang_code_to_id['myv_XX'] = old_len-1
43
+ tokenizer.id_to_lang_code[old_len-1] = 'myv_XX'
44
+ tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset
45
+
46
+ tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
47
+ tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()}
48
+ if 'myv_XX' not in tokenizer._additional_special_tokens:
49
+ tokenizer._additional_special_tokens.append('myv_XX')
50
+ tokenizer.added_tokens_encoder = {}
51
+
52
+
53
+ def translate(text, model, tokenizer, src='ru_RU', trg='myv_XX', max_length='auto', num_beams=3, repetition_penalty=5.0, train_mode=False, n_out=None, **kwargs):
54
+ tokenizer.src_lang = src
55
+ encoded = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024)
56
+ if max_length == 'auto':
57
+ max_length = int(32 + 1.5 * encoded.input_ids.shape[1])
58
+ if train_mode:
59
+ model.train()
60
+ else:
61
+ model.eval()
62
+ generated_tokens = model.generate(
63
+ **encoded.to(model.device),
64
+ forced_bos_token_id=tokenizer.lang_code_to_id[trg],
65
+ max_length=max_length,
66
+ num_beams=num_beams,
67
+ repetition_penalty=repetition_penalty,
68
+ num_return_sequences=n_out or 1,
69
+ **kwargs
70
+ )
71
+ out = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
72
+ if isinstance(text, str) and n_out is None:
73
+ return out[0]
74
+ return out
75
+
76
+
77
+ mname = 'slone/mbart-large-51-myv-mul-v1'
78
+ model = MBartForConditionalGeneration.from_pretrained(mname)
79
+ tokenizer = MBart50Tokenizer.from_pretrained(mname)
80
+ fix_tokenizer(tokenizer)
81
+
82
+
83
+ print(translate('Шумбрат, киска!', model, tokenizer, src='myv_XX', trg='ru_RU'))
84
+ # Привет, собака! # действительно, "киска" с эрзянского переводится именно так
85
+ print(translate('Шумбрат, киска!', model, tokenizer, src='myv_XX', trg='en_XX'))
86
+ # Hi, dog!
87
+ ```