|
import torch |
|
import torch.nn as nn |
|
|
|
from taming.modules.losses.vqperceptual import * |
|
|
|
|
|
class LPIPSWithDiscriminator(nn.Module): |
|
def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0, |
|
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0, |
|
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False, |
|
disc_loss="hinge"): |
|
|
|
super().__init__() |
|
assert disc_loss in ["hinge", "vanilla"] |
|
self.kl_weight = kl_weight |
|
self.pixel_weight = pixelloss_weight |
|
self.perceptual_loss = LPIPS().eval() |
|
self.perceptual_weight = perceptual_weight |
|
|
|
self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init) |
|
|
|
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels, |
|
n_layers=disc_num_layers, |
|
use_actnorm=use_actnorm |
|
).apply(weights_init) |
|
self.discriminator_iter_start = disc_start |
|
self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss |
|
self.disc_factor = disc_factor |
|
self.discriminator_weight = disc_weight |
|
self.disc_conditional = disc_conditional |
|
|
|
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): |
|
if last_layer is not None: |
|
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] |
|
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] |
|
else: |
|
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0] |
|
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0] |
|
|
|
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) |
|
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() |
|
d_weight = d_weight * self.discriminator_weight |
|
return d_weight |
|
|
|
def forward(self, inputs, reconstructions, posteriors, optimizer_idx, |
|
global_step, last_layer=None, cond=None, split="train", |
|
weights=None): |
|
rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()) |
|
if self.perceptual_weight > 0: |
|
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous()) |
|
rec_loss = rec_loss + self.perceptual_weight * p_loss |
|
|
|
nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar |
|
weighted_nll_loss = nll_loss |
|
if weights is not None: |
|
weighted_nll_loss = weights*nll_loss |
|
weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0] |
|
nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] |
|
kl_loss = posteriors.kl() |
|
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] |
|
|
|
|
|
if optimizer_idx == 0: |
|
|
|
if cond is None: |
|
assert not self.disc_conditional |
|
logits_fake = self.discriminator(reconstructions.contiguous()) |
|
else: |
|
assert self.disc_conditional |
|
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1)) |
|
g_loss = -torch.mean(logits_fake) |
|
|
|
if self.disc_factor > 0.0: |
|
try: |
|
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer) |
|
except RuntimeError: |
|
assert not self.training |
|
d_weight = torch.tensor(0.0) |
|
else: |
|
d_weight = torch.tensor(0.0) |
|
|
|
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) |
|
loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss |
|
|
|
log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(), |
|
"{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(), |
|
"{}/rec_loss".format(split): rec_loss.detach().mean(), |
|
"{}/d_weight".format(split): d_weight.detach(), |
|
"{}/disc_factor".format(split): torch.tensor(disc_factor), |
|
"{}/g_loss".format(split): g_loss.detach().mean(), |
|
} |
|
return loss, log |
|
|
|
if optimizer_idx == 1: |
|
|
|
if cond is None: |
|
logits_real = self.discriminator(inputs.contiguous().detach()) |
|
logits_fake = self.discriminator(reconstructions.contiguous().detach()) |
|
else: |
|
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1)) |
|
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1)) |
|
|
|
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) |
|
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) |
|
|
|
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(), |
|
"{}/logits_real".format(split): logits_real.detach().mean(), |
|
"{}/logits_fake".format(split): logits_fake.detach().mean() |
|
} |
|
return d_loss, log |
|
|
|
|