sleepytaco
commited on
Commit
•
adcb85f
1
Parent(s):
2afcbf6
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1660.27 +/- 213.62
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4544e4bd826e346b547d3445c362fbfb68a9f925348842ac61ecb4b754d115c3
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f23e23feaf0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23e23feb80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23e23fec10>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23e23feca0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f23e23fed30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f23e23fedc0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23e23fee50>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23e23feee0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f23e23fef70>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23e2402040>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23e24020d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23e2402160>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f23e23fdd40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1680102524077583373,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPSXNr7MxWy/NTsDwAdd5T3FsOC/kvR4v7lyu74JPBQ+GLeXvxGrQMCszKu+KOs3QNOVGr9L+Ia/qRzaPkZaAEA4WGc+QffsP+gPnr7gzt4/0Kl+P7f1wr29mLE+NsFHP0Sh9r+Fn7k+iiG6v5Ooab8NrRs+k8Zpvz3sBMA92Kk+YmEbwLO8Xz8U9S+9+NQqvxwHuL+MVoA/3oGQP6R4sD9tfo+/RLCOv27CET8T2Hc8pMHGPiX4lr9niQ++gdcVv3LXgj+m6xy9m+SHP1RCaD/v3AQ/hZ+5Poohur8lPYw/ICfxvoXih78v3Gy/BPxpPsmWXT4BUZ4+m3eEPR73Qz+qy+C/9GsWPuGj5L63JPo/Oo9gPyWgijx2Q+u+huCDP+4Izb4DW/6+qRboPTOq2Lw2Un4/3RdGv9Tmqb4ivH4/RKH2v4WfuT6KIbq/JT2MPxca3j4UzWK/7aEIwDNKTD8SE6G/ZFiaPwCI075M7u6+qcYev0p8nj+o9iI/oO0xvZuOpL9bHIM/5DcSP/ZZ2Dwq1Ps+tDcgvwQUWb/hcKu+Nk+CPy0iMbxZhKo/ubpRP+/cBD+Fn7k+TAwwPyU9jD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABY8gA3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGgc6vQAAAACZN+K/AAAAAIdgvz0AAAAAIzzgPwAAAADZGwQ+AAAAAMGk+j8AAAAAfiOKvQAAAADpE9u/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3Tx/NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgL9osj0AAAAA8bb7vwAAAAAB3ok9AAAAANVV+j8AAAAAwuuxvAAAAACzCP0/AAAAAG3yo70AAAAAQ2TpvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC5KozYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIARpg88AAAAANDb7r8AAAAAvJIiPAAAAABBS/4/AAAAAPbanD0AAAAATg/bPwAAAACUVhG+AAAAAG/O4L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC5Kwo2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZJWyPQAAAADqhwDAAAAAAKtbvj0AAAAAtnvkPwAAAADVzCU9AAAAAOh52T8AAAAAf2QbvQAAAAAbTOO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJYAq+evpyKMAWyUTegDjAF0lEdAqXllum78N3V9lChoBkdAlcDIcJdB0WgHTegDaAhHQKl55pVS4vx1fZQoaAZHQJaAoR6F/QVoB03oA2gIR0Cpe6F8PWhAdX2UKGgGR0CR6rGhmGucaAdN6ANoCEdAqX6EJlar3nV9lChoBkdAlcnxBzFMqWgHTegDaAhHQKmIrN8E3bV1fZQoaAZHQHuDhlHz6JtoB03oA2gIR0CpiS/Sx7iRdX2UKGgGR0CST/OymhugaAdN6ANoCEdAqYrf4mCyyHV9lChoBkdAl/v7C3w1BWgHTegDaAhHQKmNtbfxc3V1fZQoaAZHQJidW7L+xW1oB03oA2gIR0CplME74i5edX2UKGgGR0CU7Tg0CRwIaAdN6ANoCEdAqZVE+kgwGnV9lChoBkdAlzZunQ6ZIGgHTegDaAhHQKmW/HaN+9d1fZQoaAZHQJijhaUzKtBoB03oA2gIR0Cpmc2U0Nz9dX2UKGgGR0CWXh3wTdtVaAdN6ANoCEdAqaKl2C/XXnV9lChoBkdAkYS34CZF5WgHTegDaAhHQKmjcuPFNtZ1fZQoaAZHQJe3zKvFFUhoB03oA2gIR0CpphtelbeNdX2UKGgGR0CK/UO2AoXsaAdN6ANoCEdAqalX+dbxE3V9lChoBkdAmSZZeZ5Rj2gHTegDaAhHQKmwPzjm0Vt1fZQoaAZHQINOqr1dxABoB03oA2gIR0CpsMIczZYgdX2UKGgGR0CVXwOWjXWfaAdN6ANoCEdAqbJjKvFFUnV9lChoBkdAkBbHUpd8iWgHTegDaAhHQKm1UdVea8Z1fZQoaAZHQH9eeBg/keZoB03oA2gIR0CpvPx+KCQLdX2UKGgGR0CYO/LhaTwEaAdN6ANoCEdAqb27g0j1PHV9lChoBkdAhq/Bs67ulWgHTegDaAhHQKnAMLeANG51fZQoaAZHQJQptHBk7OpoB03oA2gIR0CpxK9VWCEpdX2UKGgGR0CWsOGZ/kNnaAdN6ANoCEdAqcumtjkMkXV9lChoBkdAmAklv2oNu2gHTegDaAhHQKnMKYtQKrt1fZQoaAZHQJLmq7f51vFoB03oA2gIR0Cpzd8JdB0IdX2UKGgGR0CSyFcbiqACaAdN6ANoCEdAqdD3kq+ajXV9lChoBkdAlOuDnNgSe2gHTegDaAhHQKnX/VI7Njd1fZQoaAZHQIf4v+hoM8ZoB03oA2gIR0Cp2H44ZMtcdX2UKGgGR0CMtpqBVdX1aAdN6ANoCEdAqdrKNVBD5XV9lChoBkdAlU3OmWMS9WgHTegDaAhHQKnfOZ6Uqx11fZQoaAZHQJHH7987ZFpoB03oA2gIR0Cp51AEU0vXdX2UKGgGR0CMM/4dIXj3aAdN6ANoCEdAqefUTJyQxXV9lChoBkdAkbOJoCdSVGgHTegDaAhHQKnpdG2kSEl1fZQoaAZHQJMJ7eHi3odoB03oA2gIR0Cp7FoEKVpsdX2UKGgGR0CUV3uxbB42aAdN6ANoCEdAqfMi4axX4nV9lChoBkdAkrLdrO7g9GgHTegDaAhHQKnzogwoLG91fZQoaAZHQJU+jGVAzHloB03oA2gIR0Cp9UmVAzHkdX2UKGgGR0CXRVW0Z3s5aAdN6ANoCEdAqfjQlhPTHHV9lChoBkdAlUtIIBzV+mgHTegDaAhHQKoCJwCr92p1fZQoaAZHQJSFoE/0NBpoB03oA2gIR0CqAqlLFn7IdX2UKGgGR0CUxKpWmxdIaAdN6ANoCEdAqgRMlsxfwHV9lChoBkdAlV72xdIGyGgHTegDaAhHQKoHNsnAqNJ1fZQoaAZHQJT2fb5/LDBoB03oA2gIR0CqDhiVrylOdX2UKGgGR0CVENPZZjhDaAdN6ANoCEdAqg6ek+HJtHV9lChoBkdAl3PjsY2sJmgHTegDaAhHQKoQSAuqWC51fZQoaAZHQJU9Lb0voNdoB03oA2gIR0CqEzEupS75dX2UKGgGR0CVl93Kji4saAdN6ANoCEdAqh0G16Vt43V9lChoBkdAlrwywnpjc2gHTegDaAhHQKod4aAnUlR1fZQoaAZHQJUTthOP/71oB03oA2gIR0CqH8DHn2ZidX2UKGgGR0CVn7pNKyv+aAdN6ANoCEdAqiKrNOdoWnV9lChoBkdAlK05LRKHwmgHTegDaAhHQKopgBvrGBF1fZQoaAZHQJRhS5TZQHloB03oA2gIR0CqKgP2f02+dX2UKGgGR0CUdN9V3ljmaAdN6ANoCEdAqiugsVclgXV9lChoBkdAlL6c7+1jRWgHTegDaAhHQKougY3Ns311fZQoaAZHQJX0o3GXHBFoB03oA2gIR0CqNrZYYBNmdX2UKGgGR0CTitrlNlAeaAdN6ANoCEdAqjd7tZ3cHnV9lChoBkdAkbbkMG5c1WgHTegDaAhHQKo6CEi+tbN1fZQoaAZHQJL/rSeAd4poB03oA2gIR0CqPaNJ4B3idX2UKGgGR0CVC/MMI/qxaAdN6ANoCEdAqkSiJsO5KHV9lChoBkdAky3JTMqz7mgHTegDaAhHQKpFI2PT5O91fZQoaAZHQJPP04PwuuloB03oA2gIR0CqRs5+H8CQdX2UKGgGR0CSgR1NxlxwaAdN6ANoCEdAqkm10tAcDXV9lChoBkdAmKOKZc9nsmgHTegDaAhHQKpQ41+AmRh1fZQoaAZHQJmiDDn/1g9oB03oA2gIR0CqUZgFotcwdX2UKGgGR0CS5aXk5p8GaAdN6ANoCEdAqlP4Z0jkdXV9lChoBkdAmQx1XeWOZWgHTegDaAhHQKpYZM495hV1fZQoaAZHQJVchOWSlnBoB03oA2gIR0CqX7QwblzVdX2UKGgGR0CJ/wX7+DODaAdN6ANoCEdAqmA2dkJ8fHV9lChoBkdAlhrTXrdFfGgHTegDaAhHQKph3E4Nqg11fZQoaAZHQJPRWSs8xKxoB03oA2gIR0CqZLK0UoKEdX2UKGgGR0CYdHmmLtNSaAdN6ANoCEdAqmt4A0bcXXV9lChoBkdAl1pdjLB9C2gHTegDaAhHQKpr9UaQ3gl1fZQoaAZHQJQqO/UONHZoB03oA2gIR0CqbZyTyJ9BdX2UKGgGR0CVNVh/RVp9aAdN6ANoCEdAqnGiQJXyRXV9lChoBkdAlH3Anc+JQGgHTegDaAhHQKp6mNOuaF51fZQoaAZHQJXXhGpda+xoB03oA2gIR0CqexO9FnZkdX2UKGgGR0CTBh65Gz8haAdN6ANoCEdAqny1zGPxQXV9lChoBkdAlV/G6TW5H2gHTegDaAhHQKp/irAgxJx1fZQoaAZHQJIccTmGM4toB03oA2gIR0CqhmwMQVbidX2UKGgGR0CYRSOMERraaAdN6ANoCEdAqobqt5le4XV9lChoBkdAlvHeTzND+mgHTegDaAhHQKqIjO45Lh91fZQoaAZHQJW0SJVKf4BoB03oA2gIR0Cqi27ulXRxdX2UKGgGR0CY8pPIXCTEaAdN6ANoCEdAqpWu5hBqsXV9lChoBkdAlt/lmWdEs2gHTegDaAhHQKqWN9d/rjZ1fZQoaAZHQJrvG0svqTtoB03oA2gIR0CqmAeV9nbqdX2UKGgGR0CYdgRAbADaaAdN6ANoCEdAqpr/58BuGnV9lChoBkdAgyFo065oXmgHTegDaAhHQKqh2UJv5xl1fZQoaAZHQJl0RYW+GoJoB03oA2gIR0Cqols/Y8MedX2UKGgGR0CY3Rs9B8hLaAdN6ANoCEdAqqQJ6hQFcXV9lChoBkdAmA3U9ECvHWgHTegDaAhHQKqnO+pOvdN1fZQoaAZHQIhGr5AQg9xoB03oA2gIR0CqsEA13t8edX2UKGgGR0CSEd/ZuhsZaAdN6ANoCEdAqrENoL5RCXV9lChoBkdAmK2Mkt29tmgHTegDaAhHQKqzpDEWIoF1fZQoaAZHQIVXFfNRm9RoB03oA2gIR0CqtproOhCddX2UKGgGR0CSUfjoZAIIaAdN6ANoCEdAqr1d3hXKbXV9lChoBkdAmims0pEx7GgHTegDaAhHQKq93ZowmE51fZQoaAZHQJbZRnTRYzVoB03oA2gIR0Cqv5c+iaiLdX2UKGgGR0CWRUqbSZ0CaAdN6ANoCEdAqsJ+wX668XVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c447480d8fe3662c0d4a9d6c4719bf33b6004db48c0c68558c20ecc842d4e09d
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88eb5adbb53788b10d862c7ffaec8cdfea3c2777d1339e8e388a29499dccb140
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f23e23feaf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23e23feb80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23e23fec10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23e23feca0>", "_build": "<function ActorCriticPolicy._build at 0x7f23e23fed30>", "forward": "<function ActorCriticPolicy.forward at 0x7f23e23fedc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23e23fee50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23e23feee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f23e23fef70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23e2402040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23e24020d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23e2402160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f23e23fdd40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680102524077583373, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPSXNr7MxWy/NTsDwAdd5T3FsOC/kvR4v7lyu74JPBQ+GLeXvxGrQMCszKu+KOs3QNOVGr9L+Ia/qRzaPkZaAEA4WGc+QffsP+gPnr7gzt4/0Kl+P7f1wr29mLE+NsFHP0Sh9r+Fn7k+iiG6v5Ooab8NrRs+k8Zpvz3sBMA92Kk+YmEbwLO8Xz8U9S+9+NQqvxwHuL+MVoA/3oGQP6R4sD9tfo+/RLCOv27CET8T2Hc8pMHGPiX4lr9niQ++gdcVv3LXgj+m6xy9m+SHP1RCaD/v3AQ/hZ+5Poohur8lPYw/ICfxvoXih78v3Gy/BPxpPsmWXT4BUZ4+m3eEPR73Qz+qy+C/9GsWPuGj5L63JPo/Oo9gPyWgijx2Q+u+huCDP+4Izb4DW/6+qRboPTOq2Lw2Un4/3RdGv9Tmqb4ivH4/RKH2v4WfuT6KIbq/JT2MPxca3j4UzWK/7aEIwDNKTD8SE6G/ZFiaPwCI075M7u6+qcYev0p8nj+o9iI/oO0xvZuOpL9bHIM/5DcSP/ZZ2Dwq1Ps+tDcgvwQUWb/hcKu+Nk+CPy0iMbxZhKo/ubpRP+/cBD+Fn7k+TAwwPyU9jD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABY8gA3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGgc6vQAAAACZN+K/AAAAAIdgvz0AAAAAIzzgPwAAAADZGwQ+AAAAAMGk+j8AAAAAfiOKvQAAAADpE9u/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3Tx/NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgL9osj0AAAAA8bb7vwAAAAAB3ok9AAAAANVV+j8AAAAAwuuxvAAAAACzCP0/AAAAAG3yo70AAAAAQ2TpvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC5KozYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIARpg88AAAAANDb7r8AAAAAvJIiPAAAAABBS/4/AAAAAPbanD0AAAAATg/bPwAAAACUVhG+AAAAAG/O4L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC5Kwo2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZJWyPQAAAADqhwDAAAAAAKtbvj0AAAAAtnvkPwAAAADVzCU9AAAAAOh52T8AAAAAf2QbvQAAAAAbTOO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJYAq+evpyKMAWyUTegDjAF0lEdAqXllum78N3V9lChoBkdAlcDIcJdB0WgHTegDaAhHQKl55pVS4vx1fZQoaAZHQJaAoR6F/QVoB03oA2gIR0Cpe6F8PWhAdX2UKGgGR0CR6rGhmGucaAdN6ANoCEdAqX6EJlar3nV9lChoBkdAlcnxBzFMqWgHTegDaAhHQKmIrN8E3bV1fZQoaAZHQHuDhlHz6JtoB03oA2gIR0CpiS/Sx7iRdX2UKGgGR0CST/OymhugaAdN6ANoCEdAqYrf4mCyyHV9lChoBkdAl/v7C3w1BWgHTegDaAhHQKmNtbfxc3V1fZQoaAZHQJidW7L+xW1oB03oA2gIR0CplME74i5edX2UKGgGR0CU7Tg0CRwIaAdN6ANoCEdAqZVE+kgwGnV9lChoBkdAlzZunQ6ZIGgHTegDaAhHQKmW/HaN+9d1fZQoaAZHQJijhaUzKtBoB03oA2gIR0Cpmc2U0Nz9dX2UKGgGR0CWXh3wTdtVaAdN6ANoCEdAqaKl2C/XXnV9lChoBkdAkYS34CZF5WgHTegDaAhHQKmjcuPFNtZ1fZQoaAZHQJe3zKvFFUhoB03oA2gIR0CpphtelbeNdX2UKGgGR0CK/UO2AoXsaAdN6ANoCEdAqalX+dbxE3V9lChoBkdAmSZZeZ5Rj2gHTegDaAhHQKmwPzjm0Vt1fZQoaAZHQINOqr1dxABoB03oA2gIR0CpsMIczZYgdX2UKGgGR0CVXwOWjXWfaAdN6ANoCEdAqbJjKvFFUnV9lChoBkdAkBbHUpd8iWgHTegDaAhHQKm1UdVea8Z1fZQoaAZHQH9eeBg/keZoB03oA2gIR0CpvPx+KCQLdX2UKGgGR0CYO/LhaTwEaAdN6ANoCEdAqb27g0j1PHV9lChoBkdAhq/Bs67ulWgHTegDaAhHQKnAMLeANG51fZQoaAZHQJQptHBk7OpoB03oA2gIR0CpxK9VWCEpdX2UKGgGR0CWsOGZ/kNnaAdN6ANoCEdAqcumtjkMkXV9lChoBkdAmAklv2oNu2gHTegDaAhHQKnMKYtQKrt1fZQoaAZHQJLmq7f51vFoB03oA2gIR0Cpzd8JdB0IdX2UKGgGR0CSyFcbiqACaAdN6ANoCEdAqdD3kq+ajXV9lChoBkdAlOuDnNgSe2gHTegDaAhHQKnX/VI7Njd1fZQoaAZHQIf4v+hoM8ZoB03oA2gIR0Cp2H44ZMtcdX2UKGgGR0CMtpqBVdX1aAdN6ANoCEdAqdrKNVBD5XV9lChoBkdAlU3OmWMS9WgHTegDaAhHQKnfOZ6Uqx11fZQoaAZHQJHH7987ZFpoB03oA2gIR0Cp51AEU0vXdX2UKGgGR0CMM/4dIXj3aAdN6ANoCEdAqefUTJyQxXV9lChoBkdAkbOJoCdSVGgHTegDaAhHQKnpdG2kSEl1fZQoaAZHQJMJ7eHi3odoB03oA2gIR0Cp7FoEKVpsdX2UKGgGR0CUV3uxbB42aAdN6ANoCEdAqfMi4axX4nV9lChoBkdAkrLdrO7g9GgHTegDaAhHQKnzogwoLG91fZQoaAZHQJU+jGVAzHloB03oA2gIR0Cp9UmVAzHkdX2UKGgGR0CXRVW0Z3s5aAdN6ANoCEdAqfjQlhPTHHV9lChoBkdAlUtIIBzV+mgHTegDaAhHQKoCJwCr92p1fZQoaAZHQJSFoE/0NBpoB03oA2gIR0CqAqlLFn7IdX2UKGgGR0CUxKpWmxdIaAdN6ANoCEdAqgRMlsxfwHV9lChoBkdAlV72xdIGyGgHTegDaAhHQKoHNsnAqNJ1fZQoaAZHQJT2fb5/LDBoB03oA2gIR0CqDhiVrylOdX2UKGgGR0CVENPZZjhDaAdN6ANoCEdAqg6ek+HJtHV9lChoBkdAl3PjsY2sJmgHTegDaAhHQKoQSAuqWC51fZQoaAZHQJU9Lb0voNdoB03oA2gIR0CqEzEupS75dX2UKGgGR0CVl93Kji4saAdN6ANoCEdAqh0G16Vt43V9lChoBkdAlrwywnpjc2gHTegDaAhHQKod4aAnUlR1fZQoaAZHQJUTthOP/71oB03oA2gIR0CqH8DHn2ZidX2UKGgGR0CVn7pNKyv+aAdN6ANoCEdAqiKrNOdoWnV9lChoBkdAlK05LRKHwmgHTegDaAhHQKopgBvrGBF1fZQoaAZHQJRhS5TZQHloB03oA2gIR0CqKgP2f02+dX2UKGgGR0CUdN9V3ljmaAdN6ANoCEdAqiugsVclgXV9lChoBkdAlL6c7+1jRWgHTegDaAhHQKougY3Ns311fZQoaAZHQJX0o3GXHBFoB03oA2gIR0CqNrZYYBNmdX2UKGgGR0CTitrlNlAeaAdN6ANoCEdAqjd7tZ3cHnV9lChoBkdAkbbkMG5c1WgHTegDaAhHQKo6CEi+tbN1fZQoaAZHQJL/rSeAd4poB03oA2gIR0CqPaNJ4B3idX2UKGgGR0CVC/MMI/qxaAdN6ANoCEdAqkSiJsO5KHV9lChoBkdAky3JTMqz7mgHTegDaAhHQKpFI2PT5O91fZQoaAZHQJPP04PwuuloB03oA2gIR0CqRs5+H8CQdX2UKGgGR0CSgR1NxlxwaAdN6ANoCEdAqkm10tAcDXV9lChoBkdAmKOKZc9nsmgHTegDaAhHQKpQ41+AmRh1fZQoaAZHQJmiDDn/1g9oB03oA2gIR0CqUZgFotcwdX2UKGgGR0CS5aXk5p8GaAdN6ANoCEdAqlP4Z0jkdXV9lChoBkdAmQx1XeWOZWgHTegDaAhHQKpYZM495hV1fZQoaAZHQJVchOWSlnBoB03oA2gIR0CqX7QwblzVdX2UKGgGR0CJ/wX7+DODaAdN6ANoCEdAqmA2dkJ8fHV9lChoBkdAlhrTXrdFfGgHTegDaAhHQKph3E4Nqg11fZQoaAZHQJPRWSs8xKxoB03oA2gIR0CqZLK0UoKEdX2UKGgGR0CYdHmmLtNSaAdN6ANoCEdAqmt4A0bcXXV9lChoBkdAl1pdjLB9C2gHTegDaAhHQKpr9UaQ3gl1fZQoaAZHQJQqO/UONHZoB03oA2gIR0CqbZyTyJ9BdX2UKGgGR0CVNVh/RVp9aAdN6ANoCEdAqnGiQJXyRXV9lChoBkdAlH3Anc+JQGgHTegDaAhHQKp6mNOuaF51fZQoaAZHQJXXhGpda+xoB03oA2gIR0CqexO9FnZkdX2UKGgGR0CTBh65Gz8haAdN6ANoCEdAqny1zGPxQXV9lChoBkdAlV/G6TW5H2gHTegDaAhHQKp/irAgxJx1fZQoaAZHQJIccTmGM4toB03oA2gIR0CqhmwMQVbidX2UKGgGR0CYRSOMERraaAdN6ANoCEdAqobqt5le4XV9lChoBkdAlvHeTzND+mgHTegDaAhHQKqIjO45Lh91fZQoaAZHQJW0SJVKf4BoB03oA2gIR0Cqi27ulXRxdX2UKGgGR0CY8pPIXCTEaAdN6ANoCEdAqpWu5hBqsXV9lChoBkdAlt/lmWdEs2gHTegDaAhHQKqWN9d/rjZ1fZQoaAZHQJrvG0svqTtoB03oA2gIR0CqmAeV9nbqdX2UKGgGR0CYdgRAbADaaAdN6ANoCEdAqpr/58BuGnV9lChoBkdAgyFo065oXmgHTegDaAhHQKqh2UJv5xl1fZQoaAZHQJl0RYW+GoJoB03oA2gIR0Cqols/Y8MedX2UKGgGR0CY3Rs9B8hLaAdN6ANoCEdAqqQJ6hQFcXV9lChoBkdAmA3U9ECvHWgHTegDaAhHQKqnO+pOvdN1fZQoaAZHQIhGr5AQg9xoB03oA2gIR0CqsEA13t8edX2UKGgGR0CSEd/ZuhsZaAdN6ANoCEdAqrENoL5RCXV9lChoBkdAmK2Mkt29tmgHTegDaAhHQKqzpDEWIoF1fZQoaAZHQIVXFfNRm9RoB03oA2gIR0CqtproOhCddX2UKGgGR0CSUfjoZAIIaAdN6ANoCEdAqr1d3hXKbXV9lChoBkdAmims0pEx7GgHTegDaAhHQKq93ZowmE51fZQoaAZHQJbZRnTRYzVoB03oA2gIR0Cqv5c+iaiLdX2UKGgGR0CWRUqbSZ0CaAdN6ANoCEdAqsJ+wX668XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fe26e13ea6db82099ab8cc6ec976c5157de37bf8eb0ec1da1021f4e66a2fb5f
|
3 |
+
size 1170846
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1660.269286247337, "std_reward": 213.6184568702571, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-29T16:06:56.106263"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9576e5770b72f39bff2d5cb0e6ea60c32aca28d7f170afec0f25a38583d69c3
|
3 |
+
size 2136
|