|
|
#! /usr/bin/bash |
|
|
set -eux |
|
|
|
|
|
|
|
|
comet_eval_gpus=8 |
|
|
|
|
|
root_dir=$(dirname "$PWD") |
|
|
|
|
|
src_lang=en |
|
|
tgt_lang=de |
|
|
threshold=0.7 |
|
|
|
|
|
task_name=${src_lang}2${tgt_lang} |
|
|
raw_data_dir=$root_dir/data/test/raw/$task_name |
|
|
trainable_data_dir=$root_dir/data/test/trainable_data/$task_name |
|
|
|
|
|
|
|
|
decode_max_tokens=2048 |
|
|
beam=5 |
|
|
nbest=1 |
|
|
lenpen=1.0 |
|
|
|
|
|
|
|
|
model_dir=$root_dir/exps/${task_name}/${threshold}/transformer_big_wmt23 |
|
|
|
|
|
|
|
|
checkpoint_path=$model_dir/checkpoint_best.pt |
|
|
save_dir=$model_dir/decode_result |
|
|
|
|
|
mkdir -p $save_dir |
|
|
cp ${BASH_SOURCE[0]} $save_dir |
|
|
|
|
|
declare -A gen_subset_dict |
|
|
gen_subset_dict=([test]=flores [test1]=wmt22 [test2]=wmt23) |
|
|
for gen_subset in ${!gen_subset_dict[*]} |
|
|
do |
|
|
decode_file=$save_dir/decode_${gen_subset_dict[$gen_subset]}_beam${beam}_lenpen${lenpen}.$tgt_lang |
|
|
pure_file=$save_dir/pure_decode_${gen_subset_dict[$gen_subset]}_beam${beam}_lenpen${lenpen}.$tgt_lang |
|
|
|
|
|
CUDA_VISIBLE_DEVICES=0 fairseq-generate $trainable_data_dir -s $src_lang -t $tgt_lang \ |
|
|
--gen-subset $gen_subset \ |
|
|
--path $checkpoint_path \ |
|
|
--max-tokens $decode_max_tokens \ |
|
|
--beam $beam \ |
|
|
--nbest $nbest \ |
|
|
--lenpen $lenpen \ |
|
|
--seed 42 \ |
|
|
--remove-bpe | tee $decode_file |
|
|
|
|
|
|
|
|
|
|
|
grep ^H $decode_file | LC_ALL=C sort -V | cut -f3- | perl $root_dir/mosesdecoder/scripts/tokenizer/detokenizer.perl -l $tgt_lang > $pure_file |
|
|
|
|
|
eval_file=$model_dir/eval_${gen_subset_dict[$gen_subset]}.log |
|
|
cur_time=`date +"%Y-%m-%d %H:%M:%S"` |
|
|
echo "=============$cur_time===================" >> $eval_file |
|
|
echo $checkpoint_path >> $eval_file |
|
|
tail -n1 $decode_file >> $eval_file |
|
|
|
|
|
src_file=$raw_data_dir/test.${task_name}.${gen_subset_dict[$gen_subset]}.$src_lang |
|
|
ref_file=$raw_data_dir/test.${task_name}.${gen_subset_dict[$gen_subset]}.$tgt_lang |
|
|
|
|
|
comet22_file=$save_dir/comet22.${gen_subset_dict[$gen_subset]}.beam${beam}_lenpen${lenpen} |
|
|
|
|
|
sacrebleu $ref_file -i $pure_file -w 2 --tokenize zh >> $eval_file |
|
|
comet-score -s $src_file -t $pure_file -r $ref_file --model $root_dir/wmt22-comet-da/checkpoints/model.ckpt | tee $comet22_file |
|
|
echo "Comet22 Score" >> $eval_file |
|
|
tail -n1 $comet22_file >> $eval_file |
|
|
done |
|
|
|