skywalker290 commited on
Commit
a56cfb9
·
verified ·
1 Parent(s): 3bbcf65

End of training

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: google/vivit-b-16x2-kinetics400
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: vivit-vivit-d1
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # vivit-vivit-d1
18
+
19
+ This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 1.5318
22
+ - Accuracy: 0.8134
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-05
42
+ - train_batch_size: 1
43
+ - eval_batch_size: 1
44
+ - seed: 42
45
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_ratio: 0.1
48
+ - training_steps: 12010
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
55
+ | 0.0323 | 0.1 | 1201 | 1.9695 | 0.6636 |
56
+ | 1.051 | 1.1 | 2402 | 1.8521 | 0.7380 |
57
+ | 0.0027 | 2.1 | 3603 | 1.9220 | 0.6500 |
58
+ | 0.0008 | 3.1 | 4804 | 1.3982 | 0.7767 |
59
+ | 1.1999 | 4.1 | 6005 | 1.5625 | 0.6924 |
60
+ | 0.0004 | 5.1 | 7206 | 1.4784 | 0.7614 |
61
+ | 0.0188 | 6.1 | 8407 | 1.3777 | 0.7882 |
62
+ | 0.6328 | 7.1 | 9608 | 1.6121 | 0.7761 |
63
+ | 0.8161 | 8.1 | 10809 | 1.7552 | 0.7670 |
64
+ | 0.0001 | 9.1 | 12010 | 1.5318 | 0.8134 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.46.2
70
+ - Pytorch 2.5.1+cu124
71
+ - Datasets 3.1.0
72
+ - Tokenizers 0.20.3