Upload qann_model_arch.txt
Browse files- qann_model_arch.txt +60 -0
qann_model_arch.txt
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
RobertModel(
|
2 |
+
(bert): RobertaForSequenceClassification(
|
3 |
+
(roberta): RobertaModel(
|
4 |
+
(embeddings): RobertaEmbeddings(
|
5 |
+
(word_embeddings): Embedding(50265, 768, padding_idx=1)
|
6 |
+
(position_embeddings): Embedding(514, 768, padding_idx=1)
|
7 |
+
(token_type_embeddings): Embedding(1, 768)
|
8 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
9 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
10 |
+
)
|
11 |
+
(encoder): RobertaEncoder(
|
12 |
+
(layer): ModuleList(
|
13 |
+
(0-11): 12 x RobertaLayer(
|
14 |
+
(attention): RobertaAttention(
|
15 |
+
(self): QRobertaSelfAttention(
|
16 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
17 |
+
(query_quan): MyQuan(level=32, sym=True, pos_max=15.0, neg_min=-16.0, s=1.0)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(key_quan): MyQuan(level=32, sym=True, pos_max=15.0, neg_min=-16.0, s=1.0)
|
20 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
21 |
+
(value_quan): MyQuan(level=32, sym=True, pos_max=15.0, neg_min=-16.0, s=1.0)
|
22 |
+
(attn_quan): MyQuan(level=32, sym=False, pos_max=31.0, neg_min=0.0, s=1.0)
|
23 |
+
(after_attn_quan): MyQuan(level=32, sym=False, pos_max=31.0, neg_min=0.0, s=1.0)
|
24 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
25 |
+
)
|
26 |
+
(output): RobertaSelfOutput(
|
27 |
+
(dense): Sequential(
|
28 |
+
(0): Linear(in_features=768, out_features=768, bias=True)
|
29 |
+
(1): MyQuan(level=32, sym=True, pos_max=15.0, neg_min=-16.0, s=1.0)
|
30 |
+
)
|
31 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
32 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
33 |
+
)
|
34 |
+
)
|
35 |
+
(intermediate): RobertaIntermediate(
|
36 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
37 |
+
(intermediate_act_fn): Sequential(
|
38 |
+
(0): MyQuan(level=32, sym=False, pos_max=31.0, neg_min=0.0, s=1.0)
|
39 |
+
(1): ReLU()
|
40 |
+
)
|
41 |
+
)
|
42 |
+
(output): RobertaOutput(
|
43 |
+
(dense): Sequential(
|
44 |
+
(0): Linear(in_features=3072, out_features=768, bias=True)
|
45 |
+
(1): MyQuan(level=32, sym=True, pos_max=15.0, neg_min=-16.0, s=1.0)
|
46 |
+
)
|
47 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
48 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
49 |
+
)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
)
|
53 |
+
)
|
54 |
+
(classifier): RobertaClassificationHead(
|
55 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
56 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
57 |
+
(out_proj): Linear(in_features=768, out_features=5, bias=True)
|
58 |
+
)
|
59 |
+
)
|
60 |
+
)
|