update model
Browse files- code/dataset.py +0 -238
- code/networks_stylegan2.py +0 -842
- encoder.onnx +2 -2
- fbanime.pkl +2 -2
- g_mapping.onnx +2 -2
- g_synthesis.onnx +2 -2
code/dataset.py
DELETED
@@ -1,238 +0,0 @@
|
|
1 |
-
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
-
#
|
3 |
-
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
-
# and proprietary rights in and to this software, related documentation
|
5 |
-
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
-
# distribution of this software and related documentation without an express
|
7 |
-
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
-
|
9 |
-
"""Streaming images and labels from datasets created with dataset_tool.py."""
|
10 |
-
|
11 |
-
import os
|
12 |
-
import numpy as np
|
13 |
-
import zipfile
|
14 |
-
import PIL.Image
|
15 |
-
import json
|
16 |
-
import torch
|
17 |
-
import dnnlib
|
18 |
-
|
19 |
-
try:
|
20 |
-
import pyspng
|
21 |
-
except ImportError:
|
22 |
-
pyspng = None
|
23 |
-
|
24 |
-
#----------------------------------------------------------------------------
|
25 |
-
|
26 |
-
class Dataset(torch.utils.data.Dataset):
|
27 |
-
def __init__(self,
|
28 |
-
name, # Name of the dataset.
|
29 |
-
raw_shape, # Shape of the raw image data (NCHW).
|
30 |
-
max_size = None, # Artificially limit the size of the dataset. None = no limit. Applied before xflip.
|
31 |
-
use_labels = False, # Enable conditioning labels? False = label dimension is zero.
|
32 |
-
xflip = False, # Artificially double the size of the dataset via x-flips. Applied after max_size.
|
33 |
-
random_seed = 0, # Random seed to use when applying max_size.
|
34 |
-
):
|
35 |
-
self._name = name
|
36 |
-
self._raw_shape = list(raw_shape)
|
37 |
-
self._use_labels = use_labels
|
38 |
-
self._raw_labels = None
|
39 |
-
self._label_shape = None
|
40 |
-
|
41 |
-
# Apply max_size.
|
42 |
-
self._raw_idx = np.arange(self._raw_shape[0], dtype=np.int64)
|
43 |
-
if (max_size is not None) and (self._raw_idx.size > max_size):
|
44 |
-
np.random.RandomState(random_seed).shuffle(self._raw_idx)
|
45 |
-
self._raw_idx = np.sort(self._raw_idx[:max_size])
|
46 |
-
|
47 |
-
# Apply xflip.
|
48 |
-
self._xflip = np.zeros(self._raw_idx.size, dtype=np.uint8)
|
49 |
-
if xflip:
|
50 |
-
self._raw_idx = np.tile(self._raw_idx, 2)
|
51 |
-
self._xflip = np.concatenate([self._xflip, np.ones_like(self._xflip)])
|
52 |
-
|
53 |
-
def _get_raw_labels(self):
|
54 |
-
if self._raw_labels is None:
|
55 |
-
self._raw_labels = self._load_raw_labels() if self._use_labels else None
|
56 |
-
if self._raw_labels is None:
|
57 |
-
self._raw_labels = np.zeros([self._raw_shape[0], 0], dtype=np.float32)
|
58 |
-
assert isinstance(self._raw_labels, np.ndarray)
|
59 |
-
assert self._raw_labels.shape[0] == self._raw_shape[0]
|
60 |
-
assert self._raw_labels.dtype in [np.float32, np.int64]
|
61 |
-
if self._raw_labels.dtype == np.int64:
|
62 |
-
assert self._raw_labels.ndim == 1
|
63 |
-
assert np.all(self._raw_labels >= 0)
|
64 |
-
return self._raw_labels
|
65 |
-
|
66 |
-
def close(self): # to be overridden by subclass
|
67 |
-
pass
|
68 |
-
|
69 |
-
def _load_raw_image(self, raw_idx): # to be overridden by subclass
|
70 |
-
raise NotImplementedError
|
71 |
-
|
72 |
-
def _load_raw_labels(self): # to be overridden by subclass
|
73 |
-
raise NotImplementedError
|
74 |
-
|
75 |
-
def __getstate__(self):
|
76 |
-
return dict(self.__dict__, _raw_labels=None)
|
77 |
-
|
78 |
-
def __del__(self):
|
79 |
-
try:
|
80 |
-
self.close()
|
81 |
-
except:
|
82 |
-
pass
|
83 |
-
|
84 |
-
def __len__(self):
|
85 |
-
return self._raw_idx.size
|
86 |
-
|
87 |
-
def __getitem__(self, idx):
|
88 |
-
image = self._load_raw_image(self._raw_idx[idx])
|
89 |
-
assert isinstance(image, np.ndarray)
|
90 |
-
assert list(image.shape) == self.image_shape
|
91 |
-
assert image.dtype == np.uint8
|
92 |
-
if self._xflip[idx]:
|
93 |
-
assert image.ndim == 3 # CHW
|
94 |
-
image = image[:, :, ::-1]
|
95 |
-
return image.copy(), self.get_label(idx)
|
96 |
-
|
97 |
-
def get_label(self, idx):
|
98 |
-
label = self._get_raw_labels()[self._raw_idx[idx]]
|
99 |
-
if label.dtype == np.int64:
|
100 |
-
onehot = np.zeros(self.label_shape, dtype=np.float32)
|
101 |
-
onehot[label] = 1
|
102 |
-
label = onehot
|
103 |
-
return label.copy()
|
104 |
-
|
105 |
-
def get_details(self, idx):
|
106 |
-
d = dnnlib.EasyDict()
|
107 |
-
d.raw_idx = int(self._raw_idx[idx])
|
108 |
-
d.xflip = (int(self._xflip[idx]) != 0)
|
109 |
-
d.raw_label = self._get_raw_labels()[d.raw_idx].copy()
|
110 |
-
return d
|
111 |
-
|
112 |
-
@property
|
113 |
-
def name(self):
|
114 |
-
return self._name
|
115 |
-
|
116 |
-
@property
|
117 |
-
def image_shape(self):
|
118 |
-
return list(self._raw_shape[1:])
|
119 |
-
|
120 |
-
@property
|
121 |
-
def num_channels(self):
|
122 |
-
assert len(self.image_shape) == 3 # CHW
|
123 |
-
return self.image_shape[0]
|
124 |
-
|
125 |
-
@property
|
126 |
-
def resolution(self):
|
127 |
-
assert len(self.image_shape) == 3 # CHW
|
128 |
-
# assert self.image_shape[1] == self.image_shape[2]
|
129 |
-
return self.image_shape[1], self.image_shape[2]
|
130 |
-
|
131 |
-
@property
|
132 |
-
def label_shape(self):
|
133 |
-
if self._label_shape is None:
|
134 |
-
raw_labels = self._get_raw_labels()
|
135 |
-
if raw_labels.dtype == np.int64:
|
136 |
-
self._label_shape = [int(np.max(raw_labels)) + 1]
|
137 |
-
else:
|
138 |
-
self._label_shape = raw_labels.shape[1:]
|
139 |
-
return list(self._label_shape)
|
140 |
-
|
141 |
-
@property
|
142 |
-
def label_dim(self):
|
143 |
-
assert len(self.label_shape) == 1
|
144 |
-
return self.label_shape[0]
|
145 |
-
|
146 |
-
@property
|
147 |
-
def has_labels(self):
|
148 |
-
return any(x != 0 for x in self.label_shape)
|
149 |
-
|
150 |
-
@property
|
151 |
-
def has_onehot_labels(self):
|
152 |
-
return self._get_raw_labels().dtype == np.int64
|
153 |
-
|
154 |
-
#----------------------------------------------------------------------------
|
155 |
-
|
156 |
-
class ImageFolderDataset(Dataset):
|
157 |
-
def __init__(self,
|
158 |
-
path, # Path to directory or zip.
|
159 |
-
resolution = None, # Ensure specific resolution, None = highest available.
|
160 |
-
**super_kwargs, # Additional arguments for the Dataset base class.
|
161 |
-
):
|
162 |
-
self._path = path
|
163 |
-
self._zipfile = None
|
164 |
-
|
165 |
-
if os.path.isdir(self._path):
|
166 |
-
self._type = 'dir'
|
167 |
-
self._all_fnames = {os.path.relpath(os.path.join(root, fname), start=self._path) for root, _dirs, files in os.walk(self._path) for fname in files}
|
168 |
-
elif self._file_ext(self._path) == '.zip':
|
169 |
-
self._type = 'zip'
|
170 |
-
self._all_fnames = set(self._get_zipfile().namelist())
|
171 |
-
else:
|
172 |
-
raise IOError('Path must point to a directory or zip')
|
173 |
-
|
174 |
-
PIL.Image.init()
|
175 |
-
self._image_fnames = sorted(fname for fname in self._all_fnames if self._file_ext(fname) in PIL.Image.EXTENSION)
|
176 |
-
if len(self._image_fnames) == 0:
|
177 |
-
raise IOError('No image files found in the specified path')
|
178 |
-
|
179 |
-
name = os.path.splitext(os.path.basename(self._path))[0]
|
180 |
-
raw_shape = [len(self._image_fnames)] + list(self._load_raw_image(0).shape)
|
181 |
-
if resolution is not None and (raw_shape[2] != resolution[0] or raw_shape[3] != resolution[1]):
|
182 |
-
raise IOError('Image files do not match the specified resolution')
|
183 |
-
super().__init__(name=name, raw_shape=raw_shape, **super_kwargs)
|
184 |
-
|
185 |
-
@staticmethod
|
186 |
-
def _file_ext(fname):
|
187 |
-
return os.path.splitext(fname)[1].lower()
|
188 |
-
|
189 |
-
def _get_zipfile(self):
|
190 |
-
assert self._type == 'zip'
|
191 |
-
if self._zipfile is None:
|
192 |
-
self._zipfile = zipfile.ZipFile(self._path)
|
193 |
-
return self._zipfile
|
194 |
-
|
195 |
-
def _open_file(self, fname):
|
196 |
-
if self._type == 'dir':
|
197 |
-
return open(os.path.join(self._path, fname), 'rb')
|
198 |
-
if self._type == 'zip':
|
199 |
-
return self._get_zipfile().open(fname, 'r')
|
200 |
-
return None
|
201 |
-
|
202 |
-
def close(self):
|
203 |
-
try:
|
204 |
-
if self._zipfile is not None:
|
205 |
-
self._zipfile.close()
|
206 |
-
finally:
|
207 |
-
self._zipfile = None
|
208 |
-
|
209 |
-
def __getstate__(self):
|
210 |
-
return dict(super().__getstate__(), _zipfile=None)
|
211 |
-
|
212 |
-
def _load_raw_image(self, raw_idx):
|
213 |
-
fname = self._image_fnames[raw_idx]
|
214 |
-
with self._open_file(fname) as f:
|
215 |
-
if pyspng is not None and self._file_ext(fname) == '.png':
|
216 |
-
image = pyspng.load(f.read())
|
217 |
-
else:
|
218 |
-
image = np.array(PIL.Image.open(f))
|
219 |
-
if image.ndim == 2:
|
220 |
-
image = image[:, :, np.newaxis] # HW => HWC
|
221 |
-
image = image.transpose(2, 0, 1) # HWC => CHW
|
222 |
-
return image
|
223 |
-
|
224 |
-
def _load_raw_labels(self):
|
225 |
-
fname = 'dataset.json'
|
226 |
-
if fname not in self._all_fnames:
|
227 |
-
return None
|
228 |
-
with self._open_file(fname) as f:
|
229 |
-
labels = json.load(f)['labels']
|
230 |
-
if labels is None:
|
231 |
-
return None
|
232 |
-
labels = dict(labels)
|
233 |
-
labels = [labels[fname.replace('\\', '/')] for fname in self._image_fnames]
|
234 |
-
labels = np.array(labels)
|
235 |
-
labels = labels.astype({1: np.int64, 2: np.float32}[labels.ndim])
|
236 |
-
return labels
|
237 |
-
|
238 |
-
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
code/networks_stylegan2.py
DELETED
@@ -1,842 +0,0 @@
|
|
1 |
-
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
-
#
|
3 |
-
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
-
# and proprietary rights in and to this software, related documentation
|
5 |
-
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
-
# distribution of this software and related documentation without an express
|
7 |
-
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
-
|
9 |
-
"""Network architectures from the paper
|
10 |
-
"Analyzing and Improving the Image Quality of StyleGAN".
|
11 |
-
Matches the original implementation of configs E-F by Karras et al. at
|
12 |
-
https://github.com/NVlabs/stylegan2/blob/master/training/networks_stylegan2.py"""
|
13 |
-
|
14 |
-
import numpy as np
|
15 |
-
import torch
|
16 |
-
from torch_utils import misc
|
17 |
-
from torch_utils import persistence
|
18 |
-
from torch_utils.ops import conv2d_resample
|
19 |
-
from torch_utils.ops import upfirdn2d
|
20 |
-
from torch_utils.ops import bias_act
|
21 |
-
from torch_utils.ops import fma
|
22 |
-
|
23 |
-
|
24 |
-
# ----------------------------------------------------------------------------
|
25 |
-
|
26 |
-
@misc.profiled_function
|
27 |
-
def normalize_2nd_moment(x, dim=1, eps=1e-8):
|
28 |
-
return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt()
|
29 |
-
|
30 |
-
|
31 |
-
# ----------------------------------------------------------------------------
|
32 |
-
|
33 |
-
@misc.profiled_function
|
34 |
-
def modulated_conv2d(
|
35 |
-
x, # Input tensor of shape [batch_size, in_channels, in_height, in_width].
|
36 |
-
weight, # Weight tensor of shape [out_channels, in_channels, kernel_height, kernel_width].
|
37 |
-
styles, # Modulation coefficients of shape [batch_size, in_channels].
|
38 |
-
noise=None, # Optional noise tensor to add to the output activations.
|
39 |
-
up=1, # Integer upsampling factor.
|
40 |
-
down=1, # Integer downsampling factor.
|
41 |
-
padding=0, # Padding with respect to the upsampled image.
|
42 |
-
resample_filter=None,
|
43 |
-
# Low-pass filter to apply when resampling activations. Must be prepared beforehand by calling upfirdn2d.setup_filter().
|
44 |
-
demodulate=True, # Apply weight demodulation?
|
45 |
-
flip_weight=True, # False = convolution, True = correlation (matches torch.nn.functional.conv2d).
|
46 |
-
fused_modconv=True, # Perform modulation, convolution, and demodulation as a single fused operation?
|
47 |
-
):
|
48 |
-
batch_size = x.shape[0]
|
49 |
-
out_channels, in_channels, kh, kw = weight.shape
|
50 |
-
misc.assert_shape(weight, [out_channels, in_channels, kh, kw]) # [OIkk]
|
51 |
-
misc.assert_shape(x, [batch_size, in_channels, None, None]) # [NIHW]
|
52 |
-
misc.assert_shape(styles, [batch_size, in_channels]) # [NI]
|
53 |
-
|
54 |
-
# Pre-normalize inputs to avoid FP16 overflow.
|
55 |
-
if x.dtype == torch.float16 and demodulate:
|
56 |
-
weight = weight * (1 / np.sqrt(in_channels * kh * kw) / weight.norm(float('inf'), dim=[1, 2, 3],
|
57 |
-
keepdim=True)) # max_Ikk
|
58 |
-
styles = styles / styles.norm(float('inf'), dim=1, keepdim=True) # max_I
|
59 |
-
|
60 |
-
# Calculate per-sample weights and demodulation coefficients.
|
61 |
-
w = None
|
62 |
-
dcoefs = None
|
63 |
-
if demodulate or fused_modconv:
|
64 |
-
w = weight.unsqueeze(0) # [NOIkk]
|
65 |
-
w = w * styles.reshape(batch_size, 1, -1, 1, 1) # [NOIkk]
|
66 |
-
if demodulate:
|
67 |
-
dcoefs = (w.square().sum(dim=[2, 3, 4]) + 1e-8).rsqrt() # [NO]
|
68 |
-
if demodulate and fused_modconv:
|
69 |
-
w = w * dcoefs.reshape(batch_size, -1, 1, 1, 1) # [NOIkk]
|
70 |
-
|
71 |
-
# Execute by scaling the activations before and after the convolution.
|
72 |
-
if not fused_modconv:
|
73 |
-
x = x * styles.to(x.dtype).reshape(batch_size, -1, 1, 1)
|
74 |
-
x = conv2d_resample.conv2d_resample(x=x, w=weight.to(x.dtype), f=resample_filter, up=up, down=down,
|
75 |
-
padding=padding, flip_weight=flip_weight)
|
76 |
-
if demodulate and noise is not None:
|
77 |
-
x = fma.fma(x, dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1), noise.to(x.dtype))
|
78 |
-
elif demodulate:
|
79 |
-
x = x * dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1)
|
80 |
-
elif noise is not None:
|
81 |
-
x = x.add_(noise.to(x.dtype))
|
82 |
-
return x
|
83 |
-
|
84 |
-
# Execute as one fused op using grouped convolution.
|
85 |
-
with misc.suppress_tracer_warnings(): # this value will be treated as a constant
|
86 |
-
batch_size = int(batch_size)
|
87 |
-
misc.assert_shape(x, [batch_size, in_channels, None, None])
|
88 |
-
x = x.reshape(1, -1, *x.shape[2:])
|
89 |
-
w = w.reshape(-1, in_channels, kh, kw)
|
90 |
-
x = conv2d_resample.conv2d_resample(x=x, w=w.to(x.dtype), f=resample_filter, up=up, down=down, padding=padding,
|
91 |
-
groups=batch_size, flip_weight=flip_weight)
|
92 |
-
x = x.reshape(batch_size, -1, *x.shape[2:])
|
93 |
-
if noise is not None:
|
94 |
-
x = x.add_(noise)
|
95 |
-
return x
|
96 |
-
|
97 |
-
|
98 |
-
# ----------------------------------------------------------------------------
|
99 |
-
|
100 |
-
@persistence.persistent_class
|
101 |
-
class FullyConnectedLayer(torch.nn.Module):
|
102 |
-
def __init__(self,
|
103 |
-
in_features, # Number of input features.
|
104 |
-
out_features, # Number of output features.
|
105 |
-
bias=True, # Apply additive bias before the activation function?
|
106 |
-
activation='linear', # Activation function: 'relu', 'lrelu', etc.
|
107 |
-
lr_multiplier=1, # Learning rate multiplier.
|
108 |
-
bias_init=0, # Initial value for the additive bias.
|
109 |
-
):
|
110 |
-
super().__init__()
|
111 |
-
self.in_features = in_features
|
112 |
-
self.out_features = out_features
|
113 |
-
self.activation = activation
|
114 |
-
self.weight = torch.nn.Parameter(torch.randn([out_features, in_features]) / lr_multiplier)
|
115 |
-
self.bias = torch.nn.Parameter(torch.full([out_features], np.float32(bias_init))) if bias else None
|
116 |
-
self.weight_gain = lr_multiplier / np.sqrt(in_features)
|
117 |
-
self.bias_gain = lr_multiplier
|
118 |
-
|
119 |
-
def forward(self, x):
|
120 |
-
w = self.weight.to(x.dtype) * self.weight_gain
|
121 |
-
b = self.bias
|
122 |
-
if b is not None:
|
123 |
-
b = b.to(x.dtype)
|
124 |
-
if self.bias_gain != 1:
|
125 |
-
b = b * self.bias_gain
|
126 |
-
|
127 |
-
if self.activation == 'linear' and b is not None:
|
128 |
-
x = torch.addmm(b.unsqueeze(0), x, w.t())
|
129 |
-
else:
|
130 |
-
x = x.matmul(w.t())
|
131 |
-
x = bias_act.bias_act(x, b, act=self.activation)
|
132 |
-
return x
|
133 |
-
|
134 |
-
def extra_repr(self):
|
135 |
-
return f'in_features={self.in_features:d}, out_features={self.out_features:d}, activation={self.activation:s}'
|
136 |
-
|
137 |
-
|
138 |
-
# ----------------------------------------------------------------------------
|
139 |
-
|
140 |
-
@persistence.persistent_class
|
141 |
-
class Conv2dLayer(torch.nn.Module):
|
142 |
-
def __init__(self,
|
143 |
-
in_channels, # Number of input channels.
|
144 |
-
out_channels, # Number of output channels.
|
145 |
-
kernel_size, # Width and height of the convolution kernel.
|
146 |
-
bias=True, # Apply additive bias before the activation function?
|
147 |
-
activation='linear', # Activation function: 'relu', 'lrelu', etc.
|
148 |
-
up=1, # Integer upsampling factor.
|
149 |
-
down=1, # Integer downsampling factor.
|
150 |
-
resample_filter=[1, 3, 3, 1], # Low-pass filter to apply when resampling activations.
|
151 |
-
conv_clamp=None, # Clamp the output to +-X, None = disable clamping.
|
152 |
-
channels_last=False, # Expect the input to have memory_format=channels_last?
|
153 |
-
trainable=True, # Update the weights of this layer during training?
|
154 |
-
):
|
155 |
-
super().__init__()
|
156 |
-
self.in_channels = in_channels
|
157 |
-
self.out_channels = out_channels
|
158 |
-
self.activation = activation
|
159 |
-
self.up = up
|
160 |
-
self.down = down
|
161 |
-
self.conv_clamp = conv_clamp
|
162 |
-
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
|
163 |
-
self.padding = kernel_size // 2
|
164 |
-
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2))
|
165 |
-
self.act_gain = bias_act.activation_funcs[activation].def_gain
|
166 |
-
|
167 |
-
memory_format = torch.channels_last if channels_last else torch.contiguous_format
|
168 |
-
weight = torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(memory_format=memory_format)
|
169 |
-
bias = torch.zeros([out_channels]) if bias else None
|
170 |
-
if trainable:
|
171 |
-
self.weight = torch.nn.Parameter(weight)
|
172 |
-
self.bias = torch.nn.Parameter(bias) if bias is not None else None
|
173 |
-
else:
|
174 |
-
self.register_buffer('weight', weight)
|
175 |
-
if bias is not None:
|
176 |
-
self.register_buffer('bias', bias)
|
177 |
-
else:
|
178 |
-
self.bias = None
|
179 |
-
|
180 |
-
def forward(self, x, gain=1):
|
181 |
-
w = self.weight * self.weight_gain
|
182 |
-
b = self.bias.to(x.dtype) if self.bias is not None else None
|
183 |
-
flip_weight = (self.up == 1) # slightly faster
|
184 |
-
x = conv2d_resample.conv2d_resample(x=x, w=w.to(x.dtype), f=self.resample_filter, up=self.up, down=self.down,
|
185 |
-
padding=self.padding, flip_weight=flip_weight)
|
186 |
-
|
187 |
-
act_gain = self.act_gain * gain
|
188 |
-
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
|
189 |
-
x = bias_act.bias_act(x, b, act=self.activation, gain=act_gain, clamp=act_clamp)
|
190 |
-
return x
|
191 |
-
|
192 |
-
def extra_repr(self):
|
193 |
-
return ' '.join([
|
194 |
-
f'in_channels={self.in_channels:d}, out_channels={self.out_channels:d}, activation={self.activation:s},',
|
195 |
-
f'up={self.up}, down={self.down}'])
|
196 |
-
|
197 |
-
|
198 |
-
# ----------------------------------------------------------------------------
|
199 |
-
|
200 |
-
@persistence.persistent_class
|
201 |
-
class MappingNetwork(torch.nn.Module):
|
202 |
-
def __init__(self,
|
203 |
-
z_dim, # Input latent (Z) dimensionality, 0 = no latent.
|
204 |
-
c_dim, # Conditioning label (C) dimensionality, 0 = no label.
|
205 |
-
w_dim, # Intermediate latent (W) dimensionality.
|
206 |
-
num_ws, # Number of intermediate latents to output, None = do not broadcast.
|
207 |
-
num_layers=8, # Number of mapping layers.
|
208 |
-
embed_features=None, # Label embedding dimensionality, None = same as w_dim.
|
209 |
-
layer_features=None, # Number of intermediate features in the mapping layers, None = same as w_dim.
|
210 |
-
activation='lrelu', # Activation function: 'relu', 'lrelu', etc.
|
211 |
-
lr_multiplier=0.01, # Learning rate multiplier for the mapping layers.
|
212 |
-
w_avg_beta=0.998, # Decay for tracking the moving average of W during training, None = do not track.
|
213 |
-
):
|
214 |
-
super().__init__()
|
215 |
-
self.z_dim = z_dim
|
216 |
-
self.c_dim = c_dim
|
217 |
-
self.w_dim = w_dim
|
218 |
-
self.num_ws = num_ws
|
219 |
-
self.num_layers = num_layers
|
220 |
-
self.w_avg_beta = w_avg_beta
|
221 |
-
|
222 |
-
if embed_features is None:
|
223 |
-
embed_features = w_dim
|
224 |
-
if c_dim == 0:
|
225 |
-
embed_features = 0
|
226 |
-
if layer_features is None:
|
227 |
-
layer_features = w_dim
|
228 |
-
features_list = [z_dim + embed_features] + [layer_features] * (num_layers - 1) + [w_dim]
|
229 |
-
|
230 |
-
if c_dim > 0:
|
231 |
-
self.embed = FullyConnectedLayer(c_dim, embed_features)
|
232 |
-
for idx in range(num_layers):
|
233 |
-
in_features = features_list[idx]
|
234 |
-
out_features = features_list[idx + 1]
|
235 |
-
layer = FullyConnectedLayer(in_features, out_features, activation=activation, lr_multiplier=lr_multiplier)
|
236 |
-
setattr(self, f'fc{idx}', layer)
|
237 |
-
|
238 |
-
if num_ws is not None and w_avg_beta is not None:
|
239 |
-
self.register_buffer('w_avg', torch.zeros([w_dim]))
|
240 |
-
|
241 |
-
def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, update_emas=False):
|
242 |
-
# Embed, normalize, and concat inputs.
|
243 |
-
x = None
|
244 |
-
with torch.autograd.profiler.record_function('input'):
|
245 |
-
if self.z_dim > 0:
|
246 |
-
misc.assert_shape(z, [None, self.z_dim])
|
247 |
-
x = normalize_2nd_moment(z.to(torch.float32))
|
248 |
-
if self.c_dim > 0:
|
249 |
-
misc.assert_shape(c, [None, self.c_dim])
|
250 |
-
y = normalize_2nd_moment(self.embed(c.to(torch.float32)))
|
251 |
-
x = torch.cat([x, y], dim=1) if x is not None else y
|
252 |
-
|
253 |
-
# Main layers.
|
254 |
-
for idx in range(self.num_layers):
|
255 |
-
layer = getattr(self, f'fc{idx}')
|
256 |
-
x = layer(x)
|
257 |
-
|
258 |
-
# Update moving average of W.
|
259 |
-
if update_emas and self.w_avg_beta is not None:
|
260 |
-
with torch.autograd.profiler.record_function('update_w_avg'):
|
261 |
-
self.w_avg.copy_(x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta))
|
262 |
-
|
263 |
-
# Broadcast.
|
264 |
-
if self.num_ws is not None:
|
265 |
-
with torch.autograd.profiler.record_function('broadcast'):
|
266 |
-
x = x.unsqueeze(1).repeat([1, self.num_ws, 1])
|
267 |
-
|
268 |
-
# Apply truncation.
|
269 |
-
if truncation_psi != 1:
|
270 |
-
with torch.autograd.profiler.record_function('truncate'):
|
271 |
-
assert self.w_avg_beta is not None
|
272 |
-
if self.num_ws is None or truncation_cutoff is None:
|
273 |
-
x = self.w_avg.lerp(x, truncation_psi)
|
274 |
-
else:
|
275 |
-
x[:, :truncation_cutoff] = self.w_avg.lerp(x[:, :truncation_cutoff], truncation_psi)
|
276 |
-
return x
|
277 |
-
|
278 |
-
def extra_repr(self):
|
279 |
-
return f'z_dim={self.z_dim:d}, c_dim={self.c_dim:d}, w_dim={self.w_dim:d}, num_ws={self.num_ws:d}'
|
280 |
-
|
281 |
-
|
282 |
-
# ----------------------------------------------------------------------------
|
283 |
-
|
284 |
-
@persistence.persistent_class
|
285 |
-
class SynthesisLayer(torch.nn.Module):
|
286 |
-
def __init__(self,
|
287 |
-
in_channels, # Number of input channels.
|
288 |
-
out_channels, # Number of output channels.
|
289 |
-
w_dim, # Intermediate latent (W) dimensionality.
|
290 |
-
resolution, # Resolution of this layer.
|
291 |
-
kernel_size=3, # Convolution kernel size.
|
292 |
-
up=1, # Integer upsampling factor.
|
293 |
-
use_noise=True, # Enable noise input?
|
294 |
-
activation='lrelu', # Activation function: 'relu', 'lrelu', etc.
|
295 |
-
resample_filter=[1, 3, 3, 1], # Low-pass filter to apply when resampling activations.
|
296 |
-
conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping.
|
297 |
-
channels_last=False, # Use channels_last format for the weights?
|
298 |
-
):
|
299 |
-
super().__init__()
|
300 |
-
self.in_channels = in_channels
|
301 |
-
self.out_channels = out_channels
|
302 |
-
self.w_dim = w_dim
|
303 |
-
self.resolution = resolution
|
304 |
-
self.up = up
|
305 |
-
self.use_noise = use_noise
|
306 |
-
self.activation = activation
|
307 |
-
self.conv_clamp = conv_clamp
|
308 |
-
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
|
309 |
-
self.padding = kernel_size // 2
|
310 |
-
self.act_gain = bias_act.activation_funcs[activation].def_gain
|
311 |
-
|
312 |
-
self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1)
|
313 |
-
memory_format = torch.channels_last if channels_last else torch.contiguous_format
|
314 |
-
self.weight = torch.nn.Parameter(
|
315 |
-
torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(memory_format=memory_format))
|
316 |
-
if use_noise:
|
317 |
-
self.register_buffer('noise_const', torch.randn([resolution[0], resolution[1]]))
|
318 |
-
self.noise_strength = torch.nn.Parameter(torch.zeros([]))
|
319 |
-
self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
|
320 |
-
|
321 |
-
def forward(self, x, w, noise_mode='random', fused_modconv=True, gain=1):
|
322 |
-
assert noise_mode in ['random', 'const', 'none']
|
323 |
-
in_resolution = (self.resolution[0] // self.up, self.resolution[1] // self.up)
|
324 |
-
misc.assert_shape(x, [None, self.in_channels, in_resolution[0], in_resolution[1]])
|
325 |
-
styles = self.affine(w)
|
326 |
-
|
327 |
-
noise = None
|
328 |
-
if self.use_noise and noise_mode == 'random':
|
329 |
-
noise = torch.randn([x.shape[0], 1, self.resolution[0], self.resolution[1]],
|
330 |
-
device=x.device) * self.noise_strength
|
331 |
-
if self.use_noise and noise_mode == 'const':
|
332 |
-
noise = self.noise_const * self.noise_strength
|
333 |
-
|
334 |
-
flip_weight = (self.up == 1) # slightly faster
|
335 |
-
x = modulated_conv2d(x=x, weight=self.weight, styles=styles, noise=noise, up=self.up,
|
336 |
-
padding=self.padding, resample_filter=self.resample_filter, flip_weight=flip_weight,
|
337 |
-
fused_modconv=fused_modconv)
|
338 |
-
|
339 |
-
act_gain = self.act_gain * gain
|
340 |
-
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
|
341 |
-
x = bias_act.bias_act(x, self.bias.to(x.dtype), act=self.activation, gain=act_gain, clamp=act_clamp)
|
342 |
-
return x
|
343 |
-
|
344 |
-
def extra_repr(self):
|
345 |
-
return ' '.join([
|
346 |
-
f'in_channels={self.in_channels:d}, out_channels={self.out_channels:d}, w_dim={self.w_dim:d},',
|
347 |
-
f'resolution={self.resolution[0]:d}x{self.resolution[1]:d}, up={self.up}, activation={self.activation:s}'])
|
348 |
-
|
349 |
-
|
350 |
-
# ----------------------------------------------------------------------------
|
351 |
-
|
352 |
-
@persistence.persistent_class
|
353 |
-
class ToRGBLayer(torch.nn.Module):
|
354 |
-
def __init__(self, in_channels, out_channels, w_dim, kernel_size=1, conv_clamp=None, channels_last=False):
|
355 |
-
super().__init__()
|
356 |
-
self.in_channels = in_channels
|
357 |
-
self.out_channels = out_channels
|
358 |
-
self.w_dim = w_dim
|
359 |
-
self.conv_clamp = conv_clamp
|
360 |
-
self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1)
|
361 |
-
memory_format = torch.channels_last if channels_last else torch.contiguous_format
|
362 |
-
self.weight = torch.nn.Parameter(
|
363 |
-
torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(memory_format=memory_format))
|
364 |
-
self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
|
365 |
-
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2))
|
366 |
-
|
367 |
-
def forward(self, x, w, fused_modconv=True):
|
368 |
-
styles = self.affine(w) * self.weight_gain
|
369 |
-
x = modulated_conv2d(x=x, weight=self.weight, styles=styles, demodulate=False, fused_modconv=fused_modconv)
|
370 |
-
x = bias_act.bias_act(x, self.bias.to(x.dtype), clamp=self.conv_clamp)
|
371 |
-
return x
|
372 |
-
|
373 |
-
def extra_repr(self):
|
374 |
-
return f'in_channels={self.in_channels:d}, out_channels={self.out_channels:d}, w_dim={self.w_dim:d}'
|
375 |
-
|
376 |
-
|
377 |
-
# ----------------------------------------------------------------------------
|
378 |
-
|
379 |
-
@persistence.persistent_class
|
380 |
-
class SynthesisBlock(torch.nn.Module):
|
381 |
-
def __init__(self,
|
382 |
-
in_channels, # Number of input channels, 0 = first block.
|
383 |
-
out_channels, # Number of output channels.
|
384 |
-
w_dim, # Intermediate latent (W) dimensionality.
|
385 |
-
resolution, # Resolution of this block.
|
386 |
-
img_channels, # Number of output color channels.
|
387 |
-
is_last, # Is this the last block?
|
388 |
-
architecture='skip', # Architecture: 'orig', 'skip', 'resnet'.
|
389 |
-
resample_filter=[1, 3, 3, 1], # Low-pass filter to apply when resampling activations.
|
390 |
-
conv_clamp=256, # Clamp the output of convolution layers to +-X, None = disable clamping.
|
391 |
-
use_fp16=False, # Use FP16 for this block?
|
392 |
-
fp16_channels_last=False, # Use channels-last memory format with FP16?
|
393 |
-
fused_modconv_default=True,
|
394 |
-
# Default value of fused_modconv. 'inference_only' = True for inference, False for training.
|
395 |
-
**layer_kwargs, # Arguments for SynthesisLayer.
|
396 |
-
):
|
397 |
-
assert architecture in ['orig', 'skip', 'resnet']
|
398 |
-
super().__init__()
|
399 |
-
self.in_channels = in_channels
|
400 |
-
self.w_dim = w_dim
|
401 |
-
self.resolution = resolution
|
402 |
-
self.img_channels = img_channels
|
403 |
-
self.is_last = is_last
|
404 |
-
self.architecture = architecture
|
405 |
-
self.use_fp16 = use_fp16
|
406 |
-
self.channels_last = (use_fp16 and fp16_channels_last)
|
407 |
-
self.fused_modconv_default = fused_modconv_default
|
408 |
-
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
|
409 |
-
self.num_conv = 0
|
410 |
-
self.num_torgb = 0
|
411 |
-
|
412 |
-
if in_channels == 0:
|
413 |
-
self.const = torch.nn.Parameter(torch.randn([out_channels, resolution[0], resolution[1]]))
|
414 |
-
|
415 |
-
if in_channels != 0:
|
416 |
-
self.conv0 = SynthesisLayer(in_channels, out_channels, w_dim=w_dim, resolution=resolution, up=2,
|
417 |
-
resample_filter=resample_filter, conv_clamp=conv_clamp,
|
418 |
-
channels_last=self.channels_last, **layer_kwargs)
|
419 |
-
self.num_conv += 1
|
420 |
-
|
421 |
-
self.conv1 = SynthesisLayer(out_channels, out_channels, w_dim=w_dim, resolution=resolution,
|
422 |
-
conv_clamp=conv_clamp, channels_last=self.channels_last, **layer_kwargs)
|
423 |
-
self.num_conv += 1
|
424 |
-
|
425 |
-
if is_last or architecture == 'skip':
|
426 |
-
self.torgb = ToRGBLayer(out_channels, img_channels, w_dim=w_dim,
|
427 |
-
conv_clamp=conv_clamp, channels_last=self.channels_last)
|
428 |
-
self.num_torgb += 1
|
429 |
-
|
430 |
-
if in_channels != 0 and architecture == 'resnet':
|
431 |
-
self.skip = Conv2dLayer(in_channels, out_channels, kernel_size=1, bias=False, up=2,
|
432 |
-
resample_filter=resample_filter, channels_last=self.channels_last)
|
433 |
-
|
434 |
-
def forward(self, x, img, ws, force_fp32=False, fused_modconv=None, update_emas=False, **layer_kwargs):
|
435 |
-
_ = update_emas # unused
|
436 |
-
misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim])
|
437 |
-
w_iter = iter(ws.unbind(dim=1))
|
438 |
-
if ws.device.type != 'cuda':
|
439 |
-
force_fp32 = True
|
440 |
-
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
|
441 |
-
memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format
|
442 |
-
if fused_modconv is None:
|
443 |
-
fused_modconv = self.fused_modconv_default
|
444 |
-
if fused_modconv == 'inference_only':
|
445 |
-
fused_modconv = (not self.training)
|
446 |
-
|
447 |
-
# Input.
|
448 |
-
if self.in_channels == 0:
|
449 |
-
x = self.const.to(dtype=dtype, memory_format=memory_format)
|
450 |
-
x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1])
|
451 |
-
else:
|
452 |
-
misc.assert_shape(x, [None, self.in_channels, self.resolution[0] // 2, self.resolution[1] // 2])
|
453 |
-
x = x.to(dtype=dtype, memory_format=memory_format)
|
454 |
-
|
455 |
-
# Main layers.
|
456 |
-
if self.in_channels == 0:
|
457 |
-
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
|
458 |
-
elif self.architecture == 'resnet':
|
459 |
-
y = self.skip(x, gain=np.sqrt(0.5))
|
460 |
-
x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
|
461 |
-
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs)
|
462 |
-
x = y.add_(x)
|
463 |
-
else:
|
464 |
-
x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
|
465 |
-
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
|
466 |
-
|
467 |
-
# ToRGB.
|
468 |
-
if img is not None:
|
469 |
-
misc.assert_shape(img, [None, self.img_channels, self.resolution[0] // 2, self.resolution[1] // 2])
|
470 |
-
img = upfirdn2d.upsample2d(img, self.resample_filter)
|
471 |
-
if self.is_last or self.architecture == 'skip':
|
472 |
-
y = self.torgb(x, next(w_iter), fused_modconv=fused_modconv)
|
473 |
-
y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format)
|
474 |
-
img = img.add_(y) if img is not None else y
|
475 |
-
|
476 |
-
assert x.dtype == dtype
|
477 |
-
assert img is None or img.dtype == torch.float32
|
478 |
-
return x, img
|
479 |
-
|
480 |
-
def extra_repr(self):
|
481 |
-
return f'resolution={self.resolution[0]:d}x{self.resolution[1]:d}, architecture={self.architecture:s}'
|
482 |
-
|
483 |
-
|
484 |
-
# ----------------------------------------------------------------------------
|
485 |
-
|
486 |
-
@persistence.persistent_class
|
487 |
-
class SynthesisNetwork(torch.nn.Module):
|
488 |
-
def __init__(self,
|
489 |
-
w_dim, # Intermediate latent (W) dimensionality.
|
490 |
-
img_resolution, # Output image resolution.
|
491 |
-
img_channels, # Number of color channels.
|
492 |
-
channel_base=32768, # Overall multiplier for the number of channels.
|
493 |
-
channel_max=512, # Maximum number of channels in any layer.
|
494 |
-
num_fp16_res=4, # Use FP16 for the N highest resolutions.
|
495 |
-
**block_kwargs, # Arguments for SynthesisBlock.
|
496 |
-
):
|
497 |
-
assert img_resolution[0] >= 4 and img_resolution[0] & (img_resolution[0] - 1) == 0
|
498 |
-
assert img_resolution[1] >= 4 and img_resolution[1] & (img_resolution[1] - 1) == 0
|
499 |
-
super().__init__()
|
500 |
-
self.w_dim = w_dim
|
501 |
-
self.img_resolution = img_resolution
|
502 |
-
self.img_resolution_log2 = int(np.log2(min(img_resolution)))
|
503 |
-
self.min_h = img_resolution[0] // min(img_resolution)
|
504 |
-
self.min_w = img_resolution[1] // min(img_resolution)
|
505 |
-
self.img_channels = img_channels
|
506 |
-
self.num_fp16_res = num_fp16_res
|
507 |
-
self.block_resolutions = [2 ** i for i in range(2, self.img_resolution_log2 + 1)]
|
508 |
-
channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions}
|
509 |
-
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)
|
510 |
-
|
511 |
-
self.num_ws = 0
|
512 |
-
for res in self.block_resolutions:
|
513 |
-
in_channels = channels_dict[res // 2] if res > 4 else 0
|
514 |
-
out_channels = channels_dict[res]
|
515 |
-
use_fp16 = (res >= fp16_resolution)
|
516 |
-
is_last = (res == min(self.img_resolution))
|
517 |
-
block = SynthesisBlock(in_channels, out_channels, w_dim=w_dim,
|
518 |
-
resolution=(res * self.min_h, res * self.min_w),
|
519 |
-
img_channels=img_channels, is_last=is_last, use_fp16=use_fp16, **block_kwargs)
|
520 |
-
self.num_ws += block.num_conv
|
521 |
-
if is_last:
|
522 |
-
self.num_ws += block.num_torgb
|
523 |
-
setattr(self, f'b{res}', block)
|
524 |
-
|
525 |
-
def forward(self, ws, **block_kwargs):
|
526 |
-
block_ws = []
|
527 |
-
with torch.autograd.profiler.record_function('split_ws'):
|
528 |
-
misc.assert_shape(ws, [None, self.num_ws, self.w_dim])
|
529 |
-
ws = ws.to(torch.float32)
|
530 |
-
w_idx = 0
|
531 |
-
for res in self.block_resolutions:
|
532 |
-
block = getattr(self, f'b{res}')
|
533 |
-
block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb))
|
534 |
-
w_idx += block.num_conv
|
535 |
-
|
536 |
-
x = img = None
|
537 |
-
for res, cur_ws in zip(self.block_resolutions, block_ws):
|
538 |
-
block = getattr(self, f'b{res}')
|
539 |
-
x, img = block(x, img, cur_ws, **block_kwargs)
|
540 |
-
return img
|
541 |
-
|
542 |
-
def extra_repr(self):
|
543 |
-
return ' '.join([
|
544 |
-
f'w_dim={self.w_dim:d}, num_ws={self.num_ws:d},',
|
545 |
-
f'img_resolution={self.img_resolution[0]:d}x{self.img_resolution[1]:d},'
|
546 |
-
f'img_channels={self.img_channels:d},',
|
547 |
-
f'num_fp16_res={self.num_fp16_res:d}'])
|
548 |
-
|
549 |
-
|
550 |
-
# ----------------------------------------------------------------------------
|
551 |
-
|
552 |
-
@persistence.persistent_class
|
553 |
-
class Generator(torch.nn.Module):
|
554 |
-
def __init__(self,
|
555 |
-
z_dim, # Input latent (Z) dimensionality.
|
556 |
-
c_dim, # Conditioning label (C) dimensionality.
|
557 |
-
w_dim, # Intermediate latent (W) dimensionality.
|
558 |
-
img_resolution, # Output resolution.
|
559 |
-
img_channels, # Number of output color channels.
|
560 |
-
mapping_kwargs={}, # Arguments for MappingNetwork.
|
561 |
-
**synthesis_kwargs, # Arguments for SynthesisNetwork.
|
562 |
-
):
|
563 |
-
super().__init__()
|
564 |
-
self.z_dim = z_dim
|
565 |
-
self.c_dim = c_dim
|
566 |
-
self.w_dim = w_dim
|
567 |
-
self.img_resolution = img_resolution
|
568 |
-
self.img_channels = img_channels
|
569 |
-
self.synthesis = SynthesisNetwork(w_dim=w_dim, img_resolution=img_resolution, img_channels=img_channels,
|
570 |
-
**synthesis_kwargs)
|
571 |
-
self.num_ws = self.synthesis.num_ws
|
572 |
-
self.mapping = MappingNetwork(z_dim=z_dim, c_dim=c_dim, w_dim=w_dim, num_ws=self.num_ws, **mapping_kwargs)
|
573 |
-
|
574 |
-
def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, update_emas=False, **synthesis_kwargs):
|
575 |
-
ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff,
|
576 |
-
update_emas=update_emas)
|
577 |
-
img = self.synthesis(ws, update_emas=update_emas, **synthesis_kwargs)
|
578 |
-
return img
|
579 |
-
|
580 |
-
|
581 |
-
# ----------------------------------------------------------------------------
|
582 |
-
|
583 |
-
@persistence.persistent_class
|
584 |
-
class DiscriminatorBlock(torch.nn.Module):
|
585 |
-
def __init__(self,
|
586 |
-
in_channels, # Number of input channels, 0 = first block.
|
587 |
-
tmp_channels, # Number of intermediate channels.
|
588 |
-
out_channels, # Number of output channels.
|
589 |
-
resolution, # Resolution of this block.
|
590 |
-
img_channels, # Number of input color channels.
|
591 |
-
first_layer_idx, # Index of the first layer.
|
592 |
-
architecture='resnet', # Architecture: 'orig', 'skip', 'resnet'.
|
593 |
-
activation='lrelu', # Activation function: 'relu', 'lrelu', etc.
|
594 |
-
resample_filter=[1, 3, 3, 1], # Low-pass filter to apply when resampling activations.
|
595 |
-
conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping.
|
596 |
-
use_fp16=False, # Use FP16 for this block?
|
597 |
-
fp16_channels_last=False, # Use channels-last memory format with FP16?
|
598 |
-
freeze_layers=0, # Freeze-D: Number of layers to freeze.
|
599 |
-
):
|
600 |
-
assert in_channels in [0, tmp_channels]
|
601 |
-
assert architecture in ['orig', 'skip', 'resnet']
|
602 |
-
super().__init__()
|
603 |
-
self.in_channels = in_channels
|
604 |
-
self.resolution = resolution
|
605 |
-
self.img_channels = img_channels
|
606 |
-
self.first_layer_idx = first_layer_idx
|
607 |
-
self.architecture = architecture
|
608 |
-
self.use_fp16 = use_fp16
|
609 |
-
self.channels_last = (use_fp16 and fp16_channels_last)
|
610 |
-
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
|
611 |
-
|
612 |
-
self.num_layers = 0
|
613 |
-
|
614 |
-
def trainable_gen():
|
615 |
-
while True:
|
616 |
-
layer_idx = self.first_layer_idx + self.num_layers
|
617 |
-
trainable = (layer_idx >= freeze_layers)
|
618 |
-
self.num_layers += 1
|
619 |
-
yield trainable
|
620 |
-
|
621 |
-
trainable_iter = trainable_gen()
|
622 |
-
|
623 |
-
if in_channels == 0 or architecture == 'skip':
|
624 |
-
self.fromrgb = Conv2dLayer(img_channels, tmp_channels, kernel_size=1, activation=activation,
|
625 |
-
trainable=next(trainable_iter), conv_clamp=conv_clamp,
|
626 |
-
channels_last=self.channels_last)
|
627 |
-
|
628 |
-
self.conv0 = Conv2dLayer(tmp_channels, tmp_channels, kernel_size=3, activation=activation,
|
629 |
-
trainable=next(trainable_iter), conv_clamp=conv_clamp,
|
630 |
-
channels_last=self.channels_last)
|
631 |
-
|
632 |
-
self.conv1 = Conv2dLayer(tmp_channels, out_channels, kernel_size=3, activation=activation, down=2,
|
633 |
-
trainable=next(trainable_iter), resample_filter=resample_filter, conv_clamp=conv_clamp,
|
634 |
-
channels_last=self.channels_last)
|
635 |
-
|
636 |
-
if architecture == 'resnet':
|
637 |
-
self.skip = Conv2dLayer(tmp_channels, out_channels, kernel_size=1, bias=False, down=2,
|
638 |
-
trainable=next(trainable_iter), resample_filter=resample_filter,
|
639 |
-
channels_last=self.channels_last)
|
640 |
-
|
641 |
-
def forward(self, x, img, force_fp32=False):
|
642 |
-
if (x if x is not None else img).device.type != 'cuda':
|
643 |
-
force_fp32 = True
|
644 |
-
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
|
645 |
-
memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format
|
646 |
-
|
647 |
-
# Input.
|
648 |
-
if x is not None:
|
649 |
-
misc.assert_shape(x, [None, self.in_channels, self.resolution[0], self.resolution[1]])
|
650 |
-
x = x.to(dtype=dtype, memory_format=memory_format)
|
651 |
-
|
652 |
-
# FromRGB.
|
653 |
-
if self.in_channels == 0 or self.architecture == 'skip':
|
654 |
-
misc.assert_shape(img, [None, self.img_channels, self.resolution[0], self.resolution[1]])
|
655 |
-
img = img.to(dtype=dtype, memory_format=memory_format)
|
656 |
-
y = self.fromrgb(img)
|
657 |
-
x = x + y if x is not None else y
|
658 |
-
img = upfirdn2d.downsample2d(img, self.resample_filter) if self.architecture == 'skip' else None
|
659 |
-
|
660 |
-
# Main layers.
|
661 |
-
if self.architecture == 'resnet':
|
662 |
-
y = self.skip(x, gain=np.sqrt(0.5))
|
663 |
-
x = self.conv0(x)
|
664 |
-
x = self.conv1(x, gain=np.sqrt(0.5))
|
665 |
-
x = y.add_(x)
|
666 |
-
else:
|
667 |
-
x = self.conv0(x)
|
668 |
-
x = self.conv1(x)
|
669 |
-
|
670 |
-
assert x.dtype == dtype
|
671 |
-
return x, img
|
672 |
-
|
673 |
-
def extra_repr(self):
|
674 |
-
return f'resolution={self.resolution[0]:d}x{self.resolution[1]:d}, architecture={self.architecture:s}'
|
675 |
-
|
676 |
-
|
677 |
-
# ----------------------------------------------------------------------------
|
678 |
-
|
679 |
-
@persistence.persistent_class
|
680 |
-
class MinibatchStdLayer(torch.nn.Module):
|
681 |
-
def __init__(self, group_size, num_channels=1):
|
682 |
-
super().__init__()
|
683 |
-
self.group_size = group_size
|
684 |
-
self.num_channels = num_channels
|
685 |
-
|
686 |
-
def forward(self, x):
|
687 |
-
N, C, H, W = x.shape
|
688 |
-
with misc.suppress_tracer_warnings(): # as_tensor results are registered as constants
|
689 |
-
G = torch.min(torch.as_tensor(self.group_size), torch.as_tensor(N)) if self.group_size is not None else N
|
690 |
-
F = self.num_channels
|
691 |
-
c = C // F
|
692 |
-
|
693 |
-
y = x.reshape(G, -1, F, c, H,
|
694 |
-
W) # [GnFcHW] Split minibatch N into n groups of size G, and channels C into F groups of size c.
|
695 |
-
y = y - y.mean(dim=0) # [GnFcHW] Subtract mean over group.
|
696 |
-
y = y.square().mean(dim=0) # [nFcHW] Calc variance over group.
|
697 |
-
y = (y + 1e-8).sqrt() # [nFcHW] Calc stddev over group.
|
698 |
-
y = y.mean(dim=[2, 3, 4]) # [nF] Take average over channels and pixels.
|
699 |
-
y = y.reshape(-1, F, 1, 1) # [nF11] Add missing dimensions.
|
700 |
-
y = y.repeat(G, 1, H, W) # [NFHW] Replicate over group and pixels.
|
701 |
-
x = torch.cat([x, y], dim=1) # [NCHW] Append to input as new channels.
|
702 |
-
return x
|
703 |
-
|
704 |
-
def extra_repr(self):
|
705 |
-
return f'group_size={self.group_size}, num_channels={self.num_channels:d}'
|
706 |
-
|
707 |
-
|
708 |
-
# ----------------------------------------------------------------------------
|
709 |
-
|
710 |
-
@persistence.persistent_class
|
711 |
-
class DiscriminatorEpilogue(torch.nn.Module):
|
712 |
-
def __init__(self,
|
713 |
-
in_channels, # Number of input channels.
|
714 |
-
cmap_dim, # Dimensionality of mapped conditioning label, 0 = no label.
|
715 |
-
resolution, # Resolution of this block.
|
716 |
-
img_channels, # Number of input color channels.
|
717 |
-
architecture='resnet', # Architecture: 'orig', 'skip', 'resnet'.
|
718 |
-
mbstd_group_size=4, # Group size for the minibatch standard deviation layer, None = entire minibatch.
|
719 |
-
mbstd_num_channels=1, # Number of features for the minibatch standard deviation layer, 0 = disable.
|
720 |
-
activation='lrelu', # Activation function: 'relu', 'lrelu', etc.
|
721 |
-
conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping.
|
722 |
-
):
|
723 |
-
assert architecture in ['orig', 'skip', 'resnet']
|
724 |
-
super().__init__()
|
725 |
-
self.in_channels = in_channels
|
726 |
-
self.cmap_dim = cmap_dim
|
727 |
-
self.resolution = resolution
|
728 |
-
self.img_channels = img_channels
|
729 |
-
self.architecture = architecture
|
730 |
-
|
731 |
-
if architecture == 'skip':
|
732 |
-
self.fromrgb = Conv2dLayer(img_channels, in_channels, kernel_size=1, activation=activation)
|
733 |
-
self.mbstd = MinibatchStdLayer(group_size=mbstd_group_size,
|
734 |
-
num_channels=mbstd_num_channels) if mbstd_num_channels > 0 else None
|
735 |
-
self.conv = Conv2dLayer(in_channels + mbstd_num_channels, in_channels, kernel_size=3, activation=activation,
|
736 |
-
conv_clamp=conv_clamp)
|
737 |
-
self.fc = FullyConnectedLayer(in_channels * resolution[0] * resolution[1], in_channels, activation=activation)
|
738 |
-
self.out = FullyConnectedLayer(in_channels, 1 if cmap_dim == 0 else cmap_dim)
|
739 |
-
|
740 |
-
def forward(self, x, img, cmap, force_fp32=False):
|
741 |
-
misc.assert_shape(x, [None, self.in_channels, self.resolution[0], self.resolution[1]]) # [NCHW]
|
742 |
-
_ = force_fp32 # unused
|
743 |
-
dtype = torch.float32
|
744 |
-
memory_format = torch.contiguous_format
|
745 |
-
|
746 |
-
# FromRGB.
|
747 |
-
x = x.to(dtype=dtype, memory_format=memory_format)
|
748 |
-
if self.architecture == 'skip':
|
749 |
-
misc.assert_shape(img, [None, self.img_channels, self.resolution[0], self.resolution[1]])
|
750 |
-
img = img.to(dtype=dtype, memory_format=memory_format)
|
751 |
-
x = x + self.fromrgb(img)
|
752 |
-
|
753 |
-
# Main layers.
|
754 |
-
if self.mbstd is not None:
|
755 |
-
x = self.mbstd(x)
|
756 |
-
x = self.conv(x)
|
757 |
-
x = self.fc(x.flatten(1))
|
758 |
-
x = self.out(x)
|
759 |
-
|
760 |
-
# Conditioning.
|
761 |
-
if self.cmap_dim > 0:
|
762 |
-
misc.assert_shape(cmap, [None, self.cmap_dim])
|
763 |
-
x = (x * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim))
|
764 |
-
|
765 |
-
assert x.dtype == dtype
|
766 |
-
return x
|
767 |
-
|
768 |
-
def extra_repr(self):
|
769 |
-
return f'resolution={self.resolution[0]:d}x{self.resolution[1]:d}, architecture={self.architecture:s}'
|
770 |
-
|
771 |
-
|
772 |
-
# ----------------------------------------------------------------------------
|
773 |
-
|
774 |
-
@persistence.persistent_class
|
775 |
-
class Discriminator(torch.nn.Module):
|
776 |
-
def __init__(self,
|
777 |
-
c_dim, # Conditioning label (C) dimensionality.
|
778 |
-
img_resolution, # Input resolution.
|
779 |
-
img_channels, # Number of input color channels.
|
780 |
-
architecture='resnet', # Architecture: 'orig', 'skip', 'resnet'.
|
781 |
-
channel_base=32768, # Overall multiplier for the number of channels.
|
782 |
-
channel_max=512, # Maximum number of channels in any layer.
|
783 |
-
num_fp16_res=4, # Use FP16 for the N highest resolutions.
|
784 |
-
conv_clamp=256, # Clamp the output of convolution layers to +-X, None = disable clamping.
|
785 |
-
cmap_dim=None, # Dimensionality of mapped conditioning label, None = default.
|
786 |
-
block_kwargs={}, # Arguments for DiscriminatorBlock.
|
787 |
-
mapping_kwargs={}, # Arguments for MappingNetwork.
|
788 |
-
epilogue_kwargs={}, # Arguments for DiscriminatorEpilogue.
|
789 |
-
):
|
790 |
-
super().__init__()
|
791 |
-
self.c_dim = c_dim
|
792 |
-
self.img_resolution = img_resolution
|
793 |
-
self.img_resolution_log2 = int(np.log2(min(img_resolution)))
|
794 |
-
self.min_h = img_resolution[0] // min(img_resolution)
|
795 |
-
self.min_w = img_resolution[1] // min(img_resolution)
|
796 |
-
self.img_channels = img_channels
|
797 |
-
self.block_resolutions = [2 ** i for i in range(self.img_resolution_log2, 2, -1)]
|
798 |
-
channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]}
|
799 |
-
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)
|
800 |
-
|
801 |
-
if cmap_dim is None:
|
802 |
-
cmap_dim = channels_dict[4]
|
803 |
-
if c_dim == 0:
|
804 |
-
cmap_dim = 0
|
805 |
-
|
806 |
-
common_kwargs = dict(img_channels=img_channels, architecture=architecture, conv_clamp=conv_clamp)
|
807 |
-
cur_layer_idx = 0
|
808 |
-
for res in self.block_resolutions:
|
809 |
-
in_channels = channels_dict[res] if res < min(img_resolution) else 0
|
810 |
-
tmp_channels = channels_dict[res]
|
811 |
-
out_channels = channels_dict[res // 2]
|
812 |
-
use_fp16 = (res >= fp16_resolution)
|
813 |
-
block = DiscriminatorBlock(in_channels, tmp_channels, out_channels,
|
814 |
-
resolution=(res * self.min_h, res * self.min_w),
|
815 |
-
first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs,
|
816 |
-
**common_kwargs)
|
817 |
-
setattr(self, f'b{res}', block)
|
818 |
-
cur_layer_idx += block.num_layers
|
819 |
-
if c_dim > 0:
|
820 |
-
self.mapping = MappingNetwork(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None,
|
821 |
-
**mapping_kwargs)
|
822 |
-
self.b4 = DiscriminatorEpilogue(channels_dict[4], cmap_dim=cmap_dim,
|
823 |
-
resolution=(4 * self.min_h, 4 * self.min_w), **epilogue_kwargs,
|
824 |
-
**common_kwargs)
|
825 |
-
|
826 |
-
def forward(self, img, c, update_emas=False, **block_kwargs):
|
827 |
-
_ = update_emas # unused
|
828 |
-
x = None
|
829 |
-
for res in self.block_resolutions:
|
830 |
-
block = getattr(self, f'b{res}')
|
831 |
-
x, img = block(x, img, **block_kwargs)
|
832 |
-
|
833 |
-
cmap = None
|
834 |
-
if self.c_dim > 0:
|
835 |
-
cmap = self.mapping(None, c)
|
836 |
-
x = self.b4(x, img, cmap)
|
837 |
-
return x
|
838 |
-
|
839 |
-
def extra_repr(self):
|
840 |
-
return f'c_dim={self.c_dim:d}, img_resolution={self.img_resolution[0]:d}x{self.img_resolution[1]:d}, img_channels={self.img_channels:d}'
|
841 |
-
|
842 |
-
# ----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
encoder.onnx
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87d9a045741ad2df017285c891a09d305a46e4e868852b55bf13c92fa3a2bcba
|
3 |
+
size 724099400
|
fbanime.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f8998c37fc3358e38756cd10610946270aacf7b6479c02f77cf56cd5c280ed1
|
3 |
+
size 506682035
|
g_mapping.onnx
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86871e31b5dfb26d670849aed634da03c04438a6efcdb23337a0ecbbf01c26ef
|
3 |
+
size 16800236
|
g_synthesis.onnx
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5e60b6c132dcb610eae5b19037d84a30f23f2ddefd2535a852cae1e921dadf6
|
3 |
+
size 160482488
|