skypro1111
commited on
Upload MBartForConditionalGeneration
Browse files- README.md +7 -6
- config.json +1 -1
- model.safetensors +1 -1
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
-
|
|
|
3 |
license: mit
|
|
|
4 |
datasets:
|
5 |
- skypro1111/ubertext-2-news-verbalized
|
6 |
-
language:
|
7 |
-
- uk
|
8 |
widget:
|
9 |
-
|
|
|
10 |
---
|
11 |
|
12 |
# Model Card for mbart-large-50-verbalization
|
@@ -18,11 +19,11 @@ widget:
|
|
18 |
This model is based on the [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) architecture, renowned for its effectiveness in translation and text generation tasks across numerous languages.
|
19 |
|
20 |
## Training Data
|
21 |
-
The model was fine-tuned on a subset of
|
22 |
Dataset [skypro1111/ubertext-2-news-verbalized](https://huggingface.co/datasets/skypro1111/ubertext-2-news-verbalized)
|
23 |
|
24 |
## Training Procedure
|
25 |
-
The model underwent
|
26 |
|
27 |
```python
|
28 |
from transformers import MBartForConditionalGeneration, AutoTokenizer, Trainer, TrainingArguments
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- uk
|
4 |
license: mit
|
5 |
+
library_name: transformers
|
6 |
datasets:
|
7 |
- skypro1111/ubertext-2-news-verbalized
|
|
|
|
|
8 |
widget:
|
9 |
+
- text: Очікувалось, що цей застосунок буде запущено о 11 ранку 22.08.2025, але розробники
|
10 |
+
затягнули святкування і запуск був відкладений на 2 тижні.
|
11 |
---
|
12 |
|
13 |
# Model Card for mbart-large-50-verbalization
|
|
|
19 |
This model is based on the [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) architecture, renowned for its effectiveness in translation and text generation tasks across numerous languages.
|
20 |
|
21 |
## Training Data
|
22 |
+
The model was fine-tuned on a subset of 96,780 sentences from the Ubertext dataset, focusing on news content. The verbalized equivalents were created using Google Gemini Pro, providing a rich basis for learning text transformation tasks.
|
23 |
Dataset [skypro1111/ubertext-2-news-verbalized](https://huggingface.co/datasets/skypro1111/ubertext-2-news-verbalized)
|
24 |
|
25 |
## Training Procedure
|
26 |
+
The model underwent 70,000 training steps, which is almost 2 epochs, with further training the results degraded.
|
27 |
|
28 |
```python
|
29 |
from transformers import MBartForConditionalGeneration, AutoTokenizer, Trainer, TrainingArguments
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "./
|
3 |
"_num_labels": 3,
|
4 |
"activation_dropout": 0.0,
|
5 |
"activation_function": "gelu",
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "./results/facebook/mbart-large-50-verbalization/checkpoint-410000",
|
3 |
"_num_labels": 3,
|
4 |
"activation_dropout": 0.0,
|
5 |
"activation_function": "gelu",
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2444578688
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c5509ecd391d8d5f39318b468ef05878e270df2366c9e66f296890495c95720
|
3 |
size 2444578688
|