sky-admin commited on
Commit
48e3224
1 Parent(s): 9fd02c7
models/RealESRGAN/RealESRGAN_x4plus.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fa0d38905f75ac06eb49a7951b426670021be3018265fd191d2125df9d682f1
3
+ size 67040989
models/RealESRGAN/RealESRGAN_x4plus_anime_6B.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f872d837d3c90ed2e05227bed711af5671a6fd1c9f7d7e91c911a61f155e99da
3
+ size 17938799
models/RealESRGAN/realesr-general-x4v3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8dc7edb9ac80ccdc30c3a5dca6616509367f05fbc184ad95b731f05bece96292
3
+ size 4885111
predict.py CHANGED
@@ -100,6 +100,7 @@ class Predictor(BasePredictor):
100
  cfg_scale: int = Input(description="cfg scale", default=8),
101
  width: int = Input(description="width", default=512),
102
  height: int = Input(description="height", default=768),
 
103
  seed: int = Input(description="seed", default=-1),
104
  ) -> Path:
105
  """Run a single prediction on the model"""
@@ -114,6 +115,8 @@ class Predictor(BasePredictor):
114
  "cfg_scale": cfg_scale,
115
  "width": width,
116
  "height": height,
 
 
117
  "seed": seed,
118
  }
119
  p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
@@ -122,38 +125,3 @@ class Predictor(BasePredictor):
122
  processed.images[0].save(fp=filename, format="PNG")
123
  # single_image_b64 = encode_pil_to_base64(processed.images[0]).decode('utf-8')
124
  return Path(filename)
125
-
126
- class PredictorOld(BasePredictor):
127
- def setup(self):
128
- """Load the model into memory to make running multiple predictions efficient"""
129
- initialize()
130
- self.shared = shared
131
-
132
- def predict(
133
- self,
134
- prompt: str = Input(description="prompt en"),
135
- ) -> Dict[str, Any]:
136
- """Run a single prediction on the model"""
137
- args = {
138
- "do_not_save_samples": True,
139
- "do_not_save_grid": True,
140
- "outpath_samples": "./output",
141
- "prompt": "lora:koreanDollLikeness_v15:0.66, best quality, ultra high res, (photorealistic:1.4), 1girl, beige sweater, black choker, smile, laughing, bare shoulders, solo focus, ((full body), (brown hair:1), looking at viewer",
142
- "negative_prompt": "paintings, sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, glans, (ugly:1.331), (duplicate:1.331), (morbid:1.21), (mutilated:1.21), (tranny:1.331), mutated hands, (poorly drawn hands:1.331), blurry, 3hands,4fingers,3arms, bad anatomy, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts,poorly drawn face,mutation,deformed",
143
- "sampler_name": "DPM++ SDE Karras",
144
- "steps": 20, # 25
145
- "cfg_scale": 8,
146
- "width": 512,
147
- "height": 768,
148
- "seed": -1,
149
- }
150
- if len(prompt) > 0:
151
- print("get prompt from request: ", prompt)
152
- args["prompt"] = prompt
153
- p = StableDiffusionProcessingTxt2Img(sd_model=self.shared.sd_model, **args)
154
- processed = process_images(p)
155
- single_image_b64 = encode_pil_to_base64(processed.images[0]).decode('utf-8')
156
- return {
157
- "img_data": single_image_b64,
158
- "parameters": processed.images[0].info.get('parameters', ""),
159
- }
 
100
  cfg_scale: int = Input(description="cfg scale", default=8),
101
  width: int = Input(description="width", default=512),
102
  height: int = Input(description="height", default=768),
103
+ enable_hr: bool = Input(description="Generate high resoultion version", default=False),
104
  seed: int = Input(description="seed", default=-1),
105
  ) -> Path:
106
  """Run a single prediction on the model"""
 
115
  "cfg_scale": cfg_scale,
116
  "width": width,
117
  "height": height,
118
+ "enable_hr": enable_hr,
119
+ "hr_upscaler": "R-ESRGAN 4x+",
120
  "seed": seed,
121
  }
122
  p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
 
125
  processed.images[0].save(fp=filename, format="PNG")
126
  # single_image_b64 = encode_pil_to_base64(processed.images[0]).decode('utf-8')
127
  return Path(filename)