|
import datetime |
|
import sys |
|
import traceback |
|
|
|
import pytz |
|
import io |
|
import math |
|
import os |
|
from collections import namedtuple |
|
import re |
|
|
|
import numpy as np |
|
import piexif |
|
import piexif.helper |
|
from PIL import Image, ImageFont, ImageDraw, PngImagePlugin |
|
from fonts.ttf import Roboto |
|
import string |
|
import json |
|
import hashlib |
|
|
|
from modules import sd_samplers, shared, script_callbacks, errors |
|
from modules.shared import opts, cmd_opts |
|
|
|
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) |
|
|
|
|
|
def image_grid(imgs, batch_size=1, rows=None): |
|
if rows is None: |
|
if opts.n_rows > 0: |
|
rows = opts.n_rows |
|
elif opts.n_rows == 0: |
|
rows = batch_size |
|
elif opts.grid_prevent_empty_spots: |
|
rows = math.floor(math.sqrt(len(imgs))) |
|
while len(imgs) % rows != 0: |
|
rows -= 1 |
|
else: |
|
rows = math.sqrt(len(imgs)) |
|
rows = round(rows) |
|
if rows > len(imgs): |
|
rows = len(imgs) |
|
|
|
cols = math.ceil(len(imgs) / rows) |
|
|
|
params = script_callbacks.ImageGridLoopParams(imgs, cols, rows) |
|
script_callbacks.image_grid_callback(params) |
|
|
|
w, h = imgs[0].size |
|
grid = Image.new('RGB', size=(params.cols * w, params.rows * h), color='black') |
|
|
|
for i, img in enumerate(params.imgs): |
|
grid.paste(img, box=(i % params.cols * w, i // params.cols * h)) |
|
|
|
return grid |
|
|
|
|
|
Grid = namedtuple("Grid", ["tiles", "tile_w", "tile_h", "image_w", "image_h", "overlap"]) |
|
|
|
|
|
def split_grid(image, tile_w=512, tile_h=512, overlap=64): |
|
w = image.width |
|
h = image.height |
|
|
|
non_overlap_width = tile_w - overlap |
|
non_overlap_height = tile_h - overlap |
|
|
|
cols = math.ceil((w - overlap) / non_overlap_width) |
|
rows = math.ceil((h - overlap) / non_overlap_height) |
|
|
|
dx = (w - tile_w) / (cols - 1) if cols > 1 else 0 |
|
dy = (h - tile_h) / (rows - 1) if rows > 1 else 0 |
|
|
|
grid = Grid([], tile_w, tile_h, w, h, overlap) |
|
for row in range(rows): |
|
row_images = [] |
|
|
|
y = int(row * dy) |
|
|
|
if y + tile_h >= h: |
|
y = h - tile_h |
|
|
|
for col in range(cols): |
|
x = int(col * dx) |
|
|
|
if x + tile_w >= w: |
|
x = w - tile_w |
|
|
|
tile = image.crop((x, y, x + tile_w, y + tile_h)) |
|
|
|
row_images.append([x, tile_w, tile]) |
|
|
|
grid.tiles.append([y, tile_h, row_images]) |
|
|
|
return grid |
|
|
|
|
|
def combine_grid(grid): |
|
def make_mask_image(r): |
|
r = r * 255 / grid.overlap |
|
r = r.astype(np.uint8) |
|
return Image.fromarray(r, 'L') |
|
|
|
mask_w = make_mask_image(np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0)) |
|
mask_h = make_mask_image(np.arange(grid.overlap, dtype=np.float32).reshape((grid.overlap, 1)).repeat(grid.image_w, axis=1)) |
|
|
|
combined_image = Image.new("RGB", (grid.image_w, grid.image_h)) |
|
for y, h, row in grid.tiles: |
|
combined_row = Image.new("RGB", (grid.image_w, h)) |
|
for x, w, tile in row: |
|
if x == 0: |
|
combined_row.paste(tile, (0, 0)) |
|
continue |
|
|
|
combined_row.paste(tile.crop((0, 0, grid.overlap, h)), (x, 0), mask=mask_w) |
|
combined_row.paste(tile.crop((grid.overlap, 0, w, h)), (x + grid.overlap, 0)) |
|
|
|
if y == 0: |
|
combined_image.paste(combined_row, (0, 0)) |
|
continue |
|
|
|
combined_image.paste(combined_row.crop((0, 0, combined_row.width, grid.overlap)), (0, y), mask=mask_h) |
|
combined_image.paste(combined_row.crop((0, grid.overlap, combined_row.width, h)), (0, y + grid.overlap)) |
|
|
|
return combined_image |
|
|
|
|
|
class GridAnnotation: |
|
def __init__(self, text='', is_active=True): |
|
self.text = text |
|
self.is_active = is_active |
|
self.size = None |
|
|
|
|
|
def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0): |
|
def wrap(drawing, text, font, line_length): |
|
lines = [''] |
|
for word in text.split(): |
|
line = f'{lines[-1]} {word}'.strip() |
|
if drawing.textlength(line, font=font) <= line_length: |
|
lines[-1] = line |
|
else: |
|
lines.append(word) |
|
return lines |
|
|
|
def get_font(fontsize): |
|
try: |
|
return ImageFont.truetype(opts.font or Roboto, fontsize) |
|
except Exception: |
|
return ImageFont.truetype(Roboto, fontsize) |
|
|
|
def draw_texts(drawing, draw_x, draw_y, lines, initial_fnt, initial_fontsize): |
|
for i, line in enumerate(lines): |
|
fnt = initial_fnt |
|
fontsize = initial_fontsize |
|
while drawing.multiline_textsize(line.text, font=fnt)[0] > line.allowed_width and fontsize > 0: |
|
fontsize -= 1 |
|
fnt = get_font(fontsize) |
|
drawing.multiline_text((draw_x, draw_y + line.size[1] / 2), line.text, font=fnt, fill=color_active if line.is_active else color_inactive, anchor="mm", align="center") |
|
|
|
if not line.is_active: |
|
drawing.line((draw_x - line.size[0] // 2, draw_y + line.size[1] // 2, draw_x + line.size[0] // 2, draw_y + line.size[1] // 2), fill=color_inactive, width=4) |
|
|
|
draw_y += line.size[1] + line_spacing |
|
|
|
fontsize = (width + height) // 25 |
|
line_spacing = fontsize // 2 |
|
|
|
fnt = get_font(fontsize) |
|
|
|
color_active = (0, 0, 0) |
|
color_inactive = (153, 153, 153) |
|
|
|
pad_left = 0 if sum([sum([len(line.text) for line in lines]) for lines in ver_texts]) == 0 else width * 3 // 4 |
|
|
|
cols = im.width // width |
|
rows = im.height // height |
|
|
|
assert cols == len(hor_texts), f'bad number of horizontal texts: {len(hor_texts)}; must be {cols}' |
|
assert rows == len(ver_texts), f'bad number of vertical texts: {len(ver_texts)}; must be {rows}' |
|
|
|
calc_img = Image.new("RGB", (1, 1), "white") |
|
calc_d = ImageDraw.Draw(calc_img) |
|
|
|
for texts, allowed_width in zip(hor_texts + ver_texts, [width] * len(hor_texts) + [pad_left] * len(ver_texts)): |
|
items = [] + texts |
|
texts.clear() |
|
|
|
for line in items: |
|
wrapped = wrap(calc_d, line.text, fnt, allowed_width) |
|
texts += [GridAnnotation(x, line.is_active) for x in wrapped] |
|
|
|
for line in texts: |
|
bbox = calc_d.multiline_textbbox((0, 0), line.text, font=fnt) |
|
line.size = (bbox[2] - bbox[0], bbox[3] - bbox[1]) |
|
line.allowed_width = allowed_width |
|
|
|
hor_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing for lines in hor_texts] |
|
ver_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing * len(lines) for lines in ver_texts] |
|
|
|
pad_top = 0 if sum(hor_text_heights) == 0 else max(hor_text_heights) + line_spacing * 2 |
|
|
|
result = Image.new("RGB", (im.width + pad_left + margin * (cols-1), im.height + pad_top + margin * (rows-1)), "white") |
|
|
|
for row in range(rows): |
|
for col in range(cols): |
|
cell = im.crop((width * col, height * row, width * (col+1), height * (row+1))) |
|
result.paste(cell, (pad_left + (width + margin) * col, pad_top + (height + margin) * row)) |
|
|
|
d = ImageDraw.Draw(result) |
|
|
|
for col in range(cols): |
|
x = pad_left + (width + margin) * col + width / 2 |
|
y = pad_top / 2 - hor_text_heights[col] / 2 |
|
|
|
draw_texts(d, x, y, hor_texts[col], fnt, fontsize) |
|
|
|
for row in range(rows): |
|
x = pad_left / 2 |
|
y = pad_top + (height + margin) * row + height / 2 - ver_text_heights[row] / 2 |
|
|
|
draw_texts(d, x, y, ver_texts[row], fnt, fontsize) |
|
|
|
return result |
|
|
|
|
|
def draw_prompt_matrix(im, width, height, all_prompts, margin=0): |
|
prompts = all_prompts[1:] |
|
boundary = math.ceil(len(prompts) / 2) |
|
|
|
prompts_horiz = prompts[:boundary] |
|
prompts_vert = prompts[boundary:] |
|
|
|
hor_texts = [[GridAnnotation(x, is_active=pos & (1 << i) != 0) for i, x in enumerate(prompts_horiz)] for pos in range(1 << len(prompts_horiz))] |
|
ver_texts = [[GridAnnotation(x, is_active=pos & (1 << i) != 0) for i, x in enumerate(prompts_vert)] for pos in range(1 << len(prompts_vert))] |
|
|
|
return draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin) |
|
|
|
|
|
def resize_image(resize_mode, im, width, height, upscaler_name=None): |
|
""" |
|
Resizes an image with the specified resize_mode, width, and height. |
|
|
|
Args: |
|
resize_mode: The mode to use when resizing the image. |
|
0: Resize the image to the specified width and height. |
|
1: Resize the image to fill the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess. |
|
2: Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image. |
|
im: The image to resize. |
|
width: The width to resize the image to. |
|
height: The height to resize the image to. |
|
upscaler_name: The name of the upscaler to use. If not provided, defaults to opts.upscaler_for_img2img. |
|
""" |
|
|
|
upscaler_name = upscaler_name or opts.upscaler_for_img2img |
|
|
|
def resize(im, w, h): |
|
if upscaler_name is None or upscaler_name == "None" or im.mode == 'L': |
|
return im.resize((w, h), resample=LANCZOS) |
|
|
|
scale = max(w / im.width, h / im.height) |
|
|
|
if scale > 1.0: |
|
upscalers = [x for x in shared.sd_upscalers if x.name == upscaler_name] |
|
assert len(upscalers) > 0, f"could not find upscaler named {upscaler_name}" |
|
|
|
upscaler = upscalers[0] |
|
im = upscaler.scaler.upscale(im, scale, upscaler.data_path) |
|
|
|
if im.width != w or im.height != h: |
|
im = im.resize((w, h), resample=LANCZOS) |
|
|
|
return im |
|
|
|
if resize_mode == 0: |
|
res = resize(im, width, height) |
|
|
|
elif resize_mode == 1: |
|
ratio = width / height |
|
src_ratio = im.width / im.height |
|
|
|
src_w = width if ratio > src_ratio else im.width * height // im.height |
|
src_h = height if ratio <= src_ratio else im.height * width // im.width |
|
|
|
resized = resize(im, src_w, src_h) |
|
res = Image.new("RGB", (width, height)) |
|
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) |
|
|
|
else: |
|
ratio = width / height |
|
src_ratio = im.width / im.height |
|
|
|
src_w = width if ratio < src_ratio else im.width * height // im.height |
|
src_h = height if ratio >= src_ratio else im.height * width // im.width |
|
|
|
resized = resize(im, src_w, src_h) |
|
res = Image.new("RGB", (width, height)) |
|
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) |
|
|
|
if ratio < src_ratio: |
|
fill_height = height // 2 - src_h // 2 |
|
res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0)) |
|
res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h)) |
|
elif ratio > src_ratio: |
|
fill_width = width // 2 - src_w // 2 |
|
res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0)) |
|
res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0)) |
|
|
|
return res |
|
|
|
|
|
invalid_filename_chars = '<>:"/\\|?*\n' |
|
invalid_filename_prefix = ' ' |
|
invalid_filename_postfix = ' .' |
|
re_nonletters = re.compile(r'[\s' + string.punctuation + ']+') |
|
re_pattern = re.compile(r"(.*?)(?:\[([^\[\]]+)\]|$)") |
|
re_pattern_arg = re.compile(r"(.*)<([^>]*)>$") |
|
max_filename_part_length = 128 |
|
|
|
|
|
def sanitize_filename_part(text, replace_spaces=True): |
|
if text is None: |
|
return None |
|
|
|
if replace_spaces: |
|
text = text.replace(' ', '_') |
|
|
|
text = text.translate({ord(x): '_' for x in invalid_filename_chars}) |
|
text = text.lstrip(invalid_filename_prefix)[:max_filename_part_length] |
|
text = text.rstrip(invalid_filename_postfix) |
|
return text |
|
|
|
|
|
class FilenameGenerator: |
|
replacements = { |
|
'seed': lambda self: self.seed if self.seed is not None else '', |
|
'steps': lambda self: self.p and self.p.steps, |
|
'cfg': lambda self: self.p and self.p.cfg_scale, |
|
'width': lambda self: self.image.width, |
|
'height': lambda self: self.image.height, |
|
'styles': lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False), |
|
'sampler': lambda self: self.p and sanitize_filename_part(self.p.sampler_name, replace_spaces=False), |
|
'model_hash': lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash), |
|
'model_name': lambda self: sanitize_filename_part(shared.sd_model.sd_checkpoint_info.model_name, replace_spaces=False), |
|
'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'), |
|
'datetime': lambda self, *args: self.datetime(*args), |
|
'job_timestamp': lambda self: getattr(self.p, "job_timestamp", shared.state.job_timestamp), |
|
'prompt_hash': lambda self: hashlib.sha256(self.prompt.encode()).hexdigest()[0:8], |
|
'prompt': lambda self: sanitize_filename_part(self.prompt), |
|
'prompt_no_styles': lambda self: self.prompt_no_style(), |
|
'prompt_spaces': lambda self: sanitize_filename_part(self.prompt, replace_spaces=False), |
|
'prompt_words': lambda self: self.prompt_words(), |
|
} |
|
default_time_format = '%Y%m%d%H%M%S' |
|
|
|
def __init__(self, p, seed, prompt, image): |
|
self.p = p |
|
self.seed = seed |
|
self.prompt = prompt |
|
self.image = image |
|
|
|
def prompt_no_style(self): |
|
if self.p is None or self.prompt is None: |
|
return None |
|
|
|
prompt_no_style = self.prompt |
|
for style in shared.prompt_styles.get_style_prompts(self.p.styles): |
|
if len(style) > 0: |
|
for part in style.split("{prompt}"): |
|
prompt_no_style = prompt_no_style.replace(part, "").replace(", ,", ",").strip().strip(',') |
|
|
|
prompt_no_style = prompt_no_style.replace(style, "").strip().strip(',').strip() |
|
|
|
return sanitize_filename_part(prompt_no_style, replace_spaces=False) |
|
|
|
def prompt_words(self): |
|
words = [x for x in re_nonletters.split(self.prompt or "") if len(x) > 0] |
|
if len(words) == 0: |
|
words = ["empty"] |
|
return sanitize_filename_part(" ".join(words[0:opts.directories_max_prompt_words]), replace_spaces=False) |
|
|
|
def datetime(self, *args): |
|
time_datetime = datetime.datetime.now() |
|
|
|
time_format = args[0] if len(args) > 0 and args[0] != "" else self.default_time_format |
|
try: |
|
time_zone = pytz.timezone(args[1]) if len(args) > 1 else None |
|
except pytz.exceptions.UnknownTimeZoneError as _: |
|
time_zone = None |
|
|
|
time_zone_time = time_datetime.astimezone(time_zone) |
|
try: |
|
formatted_time = time_zone_time.strftime(time_format) |
|
except (ValueError, TypeError) as _: |
|
formatted_time = time_zone_time.strftime(self.default_time_format) |
|
|
|
return sanitize_filename_part(formatted_time, replace_spaces=False) |
|
|
|
def apply(self, x): |
|
res = '' |
|
|
|
for m in re_pattern.finditer(x): |
|
text, pattern = m.groups() |
|
res += text |
|
|
|
if pattern is None: |
|
continue |
|
|
|
pattern_args = [] |
|
while True: |
|
m = re_pattern_arg.match(pattern) |
|
if m is None: |
|
break |
|
|
|
pattern, arg = m.groups() |
|
pattern_args.insert(0, arg) |
|
|
|
fun = self.replacements.get(pattern.lower()) |
|
if fun is not None: |
|
try: |
|
replacement = fun(self, *pattern_args) |
|
except Exception: |
|
replacement = None |
|
print(f"Error adding [{pattern}] to filename", file=sys.stderr) |
|
print(traceback.format_exc(), file=sys.stderr) |
|
|
|
if replacement is not None: |
|
res += str(replacement) |
|
continue |
|
|
|
res += f'[{pattern}]' |
|
|
|
return res |
|
|
|
|
|
def get_next_sequence_number(path, basename): |
|
""" |
|
Determines and returns the next sequence number to use when saving an image in the specified directory. |
|
|
|
The sequence starts at 0. |
|
""" |
|
result = -1 |
|
if basename != '': |
|
basename = basename + "-" |
|
|
|
prefix_length = len(basename) |
|
for p in os.listdir(path): |
|
if p.startswith(basename): |
|
l = os.path.splitext(p[prefix_length:])[0].split('-') |
|
try: |
|
result = max(int(l[0]), result) |
|
except ValueError: |
|
pass |
|
|
|
return result + 1 |
|
|
|
|
|
def save_image(image, path, basename, seed=None, prompt=None, extension='png', info=None, short_filename=False, no_prompt=False, grid=False, pnginfo_section_name='parameters', p=None, existing_info=None, forced_filename=None, suffix="", save_to_dirs=None): |
|
"""Save an image. |
|
|
|
Args: |
|
image (`PIL.Image`): |
|
The image to be saved. |
|
path (`str`): |
|
The directory to save the image. Note, the option `save_to_dirs` will make the image to be saved into a sub directory. |
|
basename (`str`): |
|
The base filename which will be applied to `filename pattern`. |
|
seed, prompt, short_filename, |
|
extension (`str`): |
|
Image file extension, default is `png`. |
|
pngsectionname (`str`): |
|
Specify the name of the section which `info` will be saved in. |
|
info (`str` or `PngImagePlugin.iTXt`): |
|
PNG info chunks. |
|
existing_info (`dict`): |
|
Additional PNG info. `existing_info == {pngsectionname: info, ...}` |
|
no_prompt: |
|
TODO I don't know its meaning. |
|
p (`StableDiffusionProcessing`) |
|
forced_filename (`str`): |
|
If specified, `basename` and filename pattern will be ignored. |
|
save_to_dirs (bool): |
|
If true, the image will be saved into a subdirectory of `path`. |
|
|
|
Returns: (fullfn, txt_fullfn) |
|
fullfn (`str`): |
|
The full path of the saved imaged. |
|
txt_fullfn (`str` or None): |
|
If a text file is saved for this image, this will be its full path. Otherwise None. |
|
""" |
|
namegen = FilenameGenerator(p, seed, prompt, image) |
|
|
|
if save_to_dirs is None: |
|
save_to_dirs = (grid and opts.grid_save_to_dirs) or (not grid and opts.save_to_dirs and not no_prompt) |
|
|
|
if save_to_dirs: |
|
dirname = namegen.apply(opts.directories_filename_pattern or "[prompt_words]").lstrip(' ').rstrip('\\ /') |
|
path = os.path.join(path, dirname) |
|
|
|
os.makedirs(path, exist_ok=True) |
|
|
|
if forced_filename is None: |
|
if short_filename or seed is None: |
|
file_decoration = "" |
|
elif opts.save_to_dirs: |
|
file_decoration = opts.samples_filename_pattern or "[seed]" |
|
else: |
|
file_decoration = opts.samples_filename_pattern or "[seed]-[prompt_spaces]" |
|
|
|
add_number = opts.save_images_add_number or file_decoration == '' |
|
|
|
if file_decoration != "" and add_number: |
|
file_decoration = "-" + file_decoration |
|
|
|
file_decoration = namegen.apply(file_decoration) + suffix |
|
|
|
if add_number: |
|
basecount = get_next_sequence_number(path, basename) |
|
fullfn = None |
|
for i in range(500): |
|
fn = f"{basecount + i:05}" if basename == '' else f"{basename}-{basecount + i:04}" |
|
fullfn = os.path.join(path, f"{fn}{file_decoration}.{extension}") |
|
if not os.path.exists(fullfn): |
|
break |
|
else: |
|
fullfn = os.path.join(path, f"{file_decoration}.{extension}") |
|
else: |
|
fullfn = os.path.join(path, f"{forced_filename}.{extension}") |
|
|
|
pnginfo = existing_info or {} |
|
if info is not None: |
|
pnginfo[pnginfo_section_name] = info |
|
|
|
params = script_callbacks.ImageSaveParams(image, p, fullfn, pnginfo) |
|
script_callbacks.before_image_saved_callback(params) |
|
|
|
image = params.image |
|
fullfn = params.filename |
|
info = params.pnginfo.get(pnginfo_section_name, None) |
|
|
|
def _atomically_save_image(image_to_save, filename_without_extension, extension): |
|
|
|
temp_file_path = filename_without_extension + ".tmp" |
|
image_format = Image.registered_extensions()[extension] |
|
|
|
if extension.lower() == '.png': |
|
pnginfo_data = PngImagePlugin.PngInfo() |
|
if opts.enable_pnginfo: |
|
for k, v in params.pnginfo.items(): |
|
pnginfo_data.add_text(k, str(v)) |
|
|
|
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality, pnginfo=pnginfo_data) |
|
|
|
elif extension.lower() in (".jpg", ".jpeg", ".webp"): |
|
if image_to_save.mode == 'RGBA': |
|
image_to_save = image_to_save.convert("RGB") |
|
elif image_to_save.mode == 'I;16': |
|
image_to_save = image_to_save.point(lambda p: p * 0.0038910505836576).convert("RGB" if extension.lower() == ".webp" else "L") |
|
|
|
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality) |
|
|
|
if opts.enable_pnginfo and info is not None: |
|
exif_bytes = piexif.dump({ |
|
"Exif": { |
|
piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(info or "", encoding="unicode") |
|
}, |
|
}) |
|
|
|
piexif.insert(exif_bytes, temp_file_path) |
|
else: |
|
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality) |
|
|
|
|
|
os.replace(temp_file_path, filename_without_extension + extension) |
|
|
|
fullfn_without_extension, extension = os.path.splitext(params.filename) |
|
_atomically_save_image(image, fullfn_without_extension, extension) |
|
|
|
image.already_saved_as = fullfn |
|
|
|
oversize = image.width > opts.target_side_length or image.height > opts.target_side_length |
|
if opts.export_for_4chan and (oversize or os.stat(fullfn).st_size > opts.img_downscale_threshold * 1024 * 1024): |
|
ratio = image.width / image.height |
|
|
|
if oversize and ratio > 1: |
|
image = image.resize((round(opts.target_side_length), round(image.height * opts.target_side_length / image.width)), LANCZOS) |
|
elif oversize: |
|
image = image.resize((round(image.width * opts.target_side_length / image.height), round(opts.target_side_length)), LANCZOS) |
|
|
|
try: |
|
_atomically_save_image(image, fullfn_without_extension, ".jpg") |
|
except Exception as e: |
|
errors.display(e, "saving image as downscaled JPG") |
|
|
|
if opts.save_txt and info is not None: |
|
txt_fullfn = f"{fullfn_without_extension}.txt" |
|
with open(txt_fullfn, "w", encoding="utf8") as file: |
|
file.write(info + "\n") |
|
else: |
|
txt_fullfn = None |
|
|
|
script_callbacks.image_saved_callback(params) |
|
|
|
return fullfn, txt_fullfn |
|
|
|
|
|
def read_info_from_image(image): |
|
items = image.info or {} |
|
|
|
geninfo = items.pop('parameters', None) |
|
|
|
if "exif" in items: |
|
exif = piexif.load(items["exif"]) |
|
exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'') |
|
try: |
|
exif_comment = piexif.helper.UserComment.load(exif_comment) |
|
except ValueError: |
|
exif_comment = exif_comment.decode('utf8', errors="ignore") |
|
|
|
if exif_comment: |
|
items['exif comment'] = exif_comment |
|
geninfo = exif_comment |
|
|
|
for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif', |
|
'loop', 'background', 'timestamp', 'duration']: |
|
items.pop(field, None) |
|
|
|
if items.get("Software", None) == "NovelAI": |
|
try: |
|
json_info = json.loads(items["Comment"]) |
|
sampler = sd_samplers.samplers_map.get(json_info["sampler"], "Euler a") |
|
|
|
geninfo = f"""{items["Description"]} |
|
Negative prompt: {json_info["uc"]} |
|
Steps: {json_info["steps"]}, Sampler: {sampler}, CFG scale: {json_info["scale"]}, Seed: {json_info["seed"]}, Size: {image.width}x{image.height}, Clip skip: 2, ENSD: 31337""" |
|
except Exception: |
|
print("Error parsing NovelAI image generation parameters:", file=sys.stderr) |
|
print(traceback.format_exc(), file=sys.stderr) |
|
|
|
return geninfo, items |
|
|
|
|
|
def image_data(data): |
|
try: |
|
image = Image.open(io.BytesIO(data)) |
|
textinfo, _ = read_info_from_image(image) |
|
return textinfo, None |
|
except Exception: |
|
pass |
|
|
|
try: |
|
text = data.decode('utf8') |
|
assert len(text) < 10000 |
|
return text, None |
|
|
|
except Exception: |
|
pass |
|
|
|
return '', None |
|
|
|
|
|
def flatten(img, bgcolor): |
|
"""replaces transparency with bgcolor (example: "#ffffff"), returning an RGB mode image with no transparency""" |
|
|
|
if img.mode == "RGBA": |
|
background = Image.new('RGBA', img.size, bgcolor) |
|
background.paste(img, mask=img) |
|
img = background |
|
|
|
return img.convert('RGB') |
|
|