sksy commited on
Commit
a666bf0
·
verified ·
1 Parent(s): 1901e60

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -72
README.md CHANGED
@@ -1,72 +1,72 @@
1
- ---
2
- library_name: transformers
3
- license: apache-2.0
4
- base_model: google/mt5-small
5
- tags:
6
- - summarization
7
- - generated_from_trainer
8
- metrics:
9
- - rouge
10
- model-index:
11
- - name: mt5-small-finetuned-amazon-en-es
12
- results: []
13
- ---
14
-
15
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
- should probably proofread and complete it, then remove this comment. -->
17
-
18
- # mt5-small-finetuned-amazon-en-es
19
-
20
- This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
21
- It achieves the following results on the evaluation set:
22
- - Loss: 2.9815
23
- - Rouge1: 15.1268
24
- - Rouge2: 6.2834
25
- - Rougel: 14.1836
26
- - Rougelsum: 14.2891
27
-
28
- ## Model description
29
-
30
- More information needed
31
-
32
- ## Intended uses & limitations
33
-
34
- More information needed
35
-
36
- ## Training and evaluation data
37
-
38
- More information needed
39
-
40
- ## Training procedure
41
-
42
- ### Training hyperparameters
43
-
44
- The following hyperparameters were used during training:
45
- - learning_rate: 5.6e-05
46
- - train_batch_size: 8
47
- - eval_batch_size: 8
48
- - seed: 42
49
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
50
- - lr_scheduler_type: linear
51
- - num_epochs: 8
52
-
53
- ### Training results
54
-
55
- | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
56
- |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|
57
- | 7.0578 | 1.0 | 1374 | 3.2895 | 11.9843 | 3.2125 | 11.6212 | 11.7535 |
58
- | 3.8304 | 2.0 | 2748 | 3.1339 | 15.0305 | 4.9763 | 14.6223 | 14.6737 |
59
- | 3.5073 | 3.0 | 4122 | 3.0671 | 13.8606 | 5.3467 | 13.1739 | 13.1314 |
60
- | 3.3503 | 4.0 | 5496 | 3.0203 | 15.0263 | 6.0731 | 14.3983 | 14.4509 |
61
- | 3.2406 | 5.0 | 6870 | 3.0035 | 15.0129 | 6.1964 | 14.2638 | 14.3531 |
62
- | 3.1817 | 6.0 | 8244 | 2.9983 | 15.3756 | 6.3463 | 14.462 | 14.5718 |
63
- | 3.1265 | 7.0 | 9618 | 2.9899 | 15.0742 | 6.3106 | 14.0789 | 14.224 |
64
- | 3.1088 | 8.0 | 10992 | 2.9815 | 15.1268 | 6.2834 | 14.1836 | 14.2891 |
65
-
66
-
67
- ### Framework versions
68
-
69
- - Transformers 4.46.2
70
- - Pytorch 2.5.0+cu118
71
- - Datasets 3.1.0
72
- - Tokenizers 0.20.1
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: google/mt5-small
5
+ tags:
6
+ - summarization
7
+ - generated_from_trainer
8
+ metrics:
9
+ - rouge
10
+ model-index:
11
+ - name: mt5-small-finetuned-amazon-fr-es
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # mt5-small-finetuned-amazon-fr-es
19
+
20
+ This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 2.9815
23
+ - Rouge1: 15.1268
24
+ - Rouge2: 6.2834
25
+ - Rougel: 14.1836
26
+ - Rougelsum: 14.2891
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5.6e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 8
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|
57
+ | 7.0578 | 1.0 | 1374 | 3.2895 | 11.9843 | 3.2125 | 11.6212 | 11.7535 |
58
+ | 3.8304 | 2.0 | 2748 | 3.1339 | 15.0305 | 4.9763 | 14.6223 | 14.6737 |
59
+ | 3.5073 | 3.0 | 4122 | 3.0671 | 13.8606 | 5.3467 | 13.1739 | 13.1314 |
60
+ | 3.3503 | 4.0 | 5496 | 3.0203 | 15.0263 | 6.0731 | 14.3983 | 14.4509 |
61
+ | 3.2406 | 5.0 | 6870 | 3.0035 | 15.0129 | 6.1964 | 14.2638 | 14.3531 |
62
+ | 3.1817 | 6.0 | 8244 | 2.9983 | 15.3756 | 6.3463 | 14.462 | 14.5718 |
63
+ | 3.1265 | 7.0 | 9618 | 2.9899 | 15.0742 | 6.3106 | 14.0789 | 14.224 |
64
+ | 3.1088 | 8.0 | 10992 | 2.9815 | 15.1268 | 6.2834 | 14.1836 | 14.2891 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.46.2
70
+ - Pytorch 2.5.0+cu118
71
+ - Datasets 3.1.0
72
+ - Tokenizers 0.20.1