sjrhuschlee commited on
Commit
9164289
·
1 Parent(s): 02c0aa8

Upload modeling_t5seq.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. modeling_t5seq.py +227 -0
modeling_t5seq.py ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import warnings
3
+ from typing import List, Optional, Tuple, Union
4
+
5
+ import torch
6
+ from torch import nn
7
+ from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
8
+
9
+ from transformers import AutoModelForSequenceClassification
10
+ from transformers.modeling_outputs import (
11
+ BaseModelOutput,
12
+ Seq2SeqSequenceClassifierOutput,
13
+ )
14
+ from transformers.models.t5.configuration_t5 import T5Config
15
+ from transformers.models.t5.modeling_t5 import T5PreTrainedModel, T5Stack
16
+
17
+
18
+ class T5ClassificationHead(nn.Module):
19
+ """Head for sentence-level classification tasks."""
20
+
21
+ def __init__(
22
+ self,
23
+ input_dim: int,
24
+ inner_dim: int,
25
+ num_classes: int,
26
+ pooler_dropout: float,
27
+ ):
28
+ super().__init__()
29
+ self.dense = nn.Linear(input_dim, inner_dim)
30
+ self.dropout = nn.Dropout(p=pooler_dropout)
31
+ self.out_proj = nn.Linear(inner_dim, num_classes)
32
+
33
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
34
+ hidden_states = self.dropout(hidden_states)
35
+ hidden_states = self.dense(hidden_states)
36
+ hidden_states = torch.tanh(hidden_states)
37
+ hidden_states = self.dropout(hidden_states)
38
+ hidden_states = self.out_proj(hidden_states)
39
+ return hidden_states
40
+
41
+
42
+ class T5ForSequenceClassification(T5PreTrainedModel):
43
+ _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"]
44
+ _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
45
+
46
+ def __init__(self, config: T5Config):
47
+ super().__init__(config)
48
+ self.model_dim = config.d_model
49
+
50
+ self.shared = nn.Embedding(config.vocab_size, config.d_model)
51
+
52
+ encoder_config = copy.deepcopy(config)
53
+ encoder_config.is_decoder = False
54
+ encoder_config.use_cache = False
55
+ encoder_config.is_encoder_decoder = False
56
+ self.encoder = T5Stack(encoder_config, self.shared)
57
+
58
+ decoder_config = copy.deepcopy(config)
59
+ decoder_config.is_decoder = True
60
+ decoder_config.is_encoder_decoder = False
61
+ decoder_config.num_layers = config.num_decoder_layers
62
+ self.decoder = T5Stack(decoder_config, self.shared)
63
+
64
+ self.num_labels = config.num_labels
65
+
66
+ self.classification_head = T5ClassificationHead(
67
+ config.d_model,
68
+ config.d_model,
69
+ config.num_labels,
70
+ config.classifier_dropout,
71
+ )
72
+
73
+ # Initialize weights and apply final processing
74
+ self.post_init()
75
+
76
+ self.model_parallel = False
77
+
78
+ def get_input_embeddings(self):
79
+ return self.shared
80
+
81
+ def set_input_embeddings(self, new_embeddings):
82
+ self.shared = new_embeddings
83
+ self.encoder.set_input_embeddings(new_embeddings)
84
+ self.decoder.set_input_embeddings(new_embeddings)
85
+
86
+ def get_encoder(self):
87
+ return self.encoder
88
+
89
+ def get_decoder(self):
90
+ return self.decoder
91
+
92
+ def forward(
93
+ self,
94
+ input_ids: torch.LongTensor = None,
95
+ attention_mask: Optional[torch.Tensor] = None,
96
+ decoder_input_ids: Optional[torch.LongTensor] = None,
97
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
98
+ head_mask: Optional[torch.Tensor] = None,
99
+ decoder_head_mask: Optional[torch.Tensor] = None,
100
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
101
+ encoder_outputs: Optional[List[torch.FloatTensor]] = None,
102
+ inputs_embeds: Optional[torch.FloatTensor] = None,
103
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
104
+ labels: Optional[torch.LongTensor] = None,
105
+ use_cache: Optional[bool] = None,
106
+ output_attentions: Optional[bool] = None,
107
+ output_hidden_states: Optional[bool] = None,
108
+ return_dict: Optional[bool] = None,
109
+ ) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
110
+ r"""
111
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
112
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
113
+ config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
114
+ Returns:
115
+ """
116
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
117
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
118
+ if labels is not None:
119
+ use_cache = False
120
+
121
+ # Copied from models.bart.modeling_bart.BartModel.forward
122
+ # different to other models, T5 automatically creates decoder_input_ids from
123
+ # input_ids if no decoder_input_ids are provided
124
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
125
+ if input_ids is None:
126
+ raise ValueError(
127
+ "If no `decoder_input_ids` or `decoder_inputs_embeds` are "
128
+ "passed, `input_ids` cannot be `None`. Please pass either "
129
+ "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
130
+ )
131
+ decoder_input_ids = self._shift_right(input_ids)
132
+
133
+ # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
134
+ if head_mask is not None and decoder_head_mask is None:
135
+ if self.config.num_layers == self.config.num_decoder_layers:
136
+ warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
137
+ decoder_head_mask = head_mask
138
+
139
+ # Encode if needed (training, first prediction pass)
140
+ if encoder_outputs is None:
141
+ encoder_outputs = self.encoder(
142
+ input_ids=input_ids,
143
+ attention_mask=attention_mask,
144
+ inputs_embeds=inputs_embeds,
145
+ head_mask=head_mask,
146
+ output_attentions=output_attentions,
147
+ output_hidden_states=output_hidden_states,
148
+ return_dict=return_dict,
149
+ )
150
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
151
+ encoder_outputs = BaseModelOutput(
152
+ last_hidden_state=encoder_outputs[0],
153
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
154
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
155
+ )
156
+
157
+ hidden_states = encoder_outputs[0]
158
+
159
+ # Decode
160
+ decoder_outputs = self.decoder(
161
+ input_ids=decoder_input_ids,
162
+ attention_mask=decoder_attention_mask,
163
+ inputs_embeds=decoder_inputs_embeds,
164
+ past_key_values=None,
165
+ encoder_hidden_states=hidden_states,
166
+ encoder_attention_mask=attention_mask,
167
+ head_mask=decoder_head_mask,
168
+ cross_attn_head_mask=cross_attn_head_mask,
169
+ use_cache=use_cache,
170
+ output_attentions=output_attentions,
171
+ output_hidden_states=output_hidden_states,
172
+ return_dict=return_dict,
173
+ )
174
+
175
+ sequence_output = decoder_outputs[0]
176
+
177
+ eos_mask = input_ids.eq(self.config.eos_token_id).to(sequence_output.device)
178
+
179
+ if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
180
+ raise ValueError("All examples must have the same number of <eos> tokens.")
181
+ sentence_representation = sequence_output[eos_mask, :].view(
182
+ sequence_output.size(0), -1, sequence_output.size(-1)
183
+ )[:, -1, :]
184
+ logits = self.classification_head(sentence_representation)
185
+
186
+ loss = None
187
+ if labels is not None:
188
+ labels = labels.to(logits.device)
189
+ if self.config.problem_type is None:
190
+ if self.config.num_labels == 1:
191
+ self.config.problem_type = "regression"
192
+ elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
193
+ self.config.problem_type = "single_label_classification"
194
+ else:
195
+ self.config.problem_type = "multi_label_classification"
196
+
197
+ if self.config.problem_type == "regression":
198
+ loss_fct = MSELoss()
199
+ if self.config.num_labels == 1:
200
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
201
+ else:
202
+ loss = loss_fct(logits, labels)
203
+ elif self.config.problem_type == "single_label_classification":
204
+ loss_fct = CrossEntropyLoss()
205
+ loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
206
+ elif self.config.problem_type == "multi_label_classification":
207
+ loss_fct = BCEWithLogitsLoss()
208
+ loss = loss_fct(logits, labels)
209
+ if not return_dict:
210
+ output = (logits,) + decoder_outputs[1:] + encoder_outputs
211
+ return ((loss,) + output) if loss is not None else output
212
+
213
+ return Seq2SeqSequenceClassifierOutput(
214
+ loss=loss,
215
+ logits=logits,
216
+ past_key_values=decoder_outputs.past_key_values,
217
+ decoder_hidden_states=decoder_outputs.hidden_states,
218
+ decoder_attentions=decoder_outputs.attentions,
219
+ cross_attentions=decoder_outputs.cross_attentions,
220
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
221
+ encoder_hidden_states=encoder_outputs.hidden_states,
222
+ encoder_attentions=encoder_outputs.attentions,
223
+ )
224
+
225
+
226
+ AutoModelForSequenceClassification.register(T5Config, T5ForSequenceClassification)
227
+