sjrhuschlee
commited on
Commit
•
d685831
1
Parent(s):
28fd968
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,245 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
datasets:
|
4 |
+
- squad_v2
|
5 |
+
- squad
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
library_name: transformers
|
9 |
+
pipeline_tag: question-answering
|
10 |
+
tags:
|
11 |
+
- deberta
|
12 |
+
- deberta-v3
|
13 |
+
- question-answering
|
14 |
+
- squad
|
15 |
+
- squad_v2
|
16 |
+
model-index:
|
17 |
+
- name: sjrhuschlee/deberta-v3-base-squad2-ext-v1
|
18 |
+
results:
|
19 |
+
- task:
|
20 |
+
type: question-answering
|
21 |
+
name: Question Answering
|
22 |
+
dataset:
|
23 |
+
name: squad_v2
|
24 |
+
type: squad_v2
|
25 |
+
config: squad_v2
|
26 |
+
split: validation
|
27 |
+
metrics:
|
28 |
+
- type: exact_match
|
29 |
+
value: 79.483
|
30 |
+
name: Exact Match
|
31 |
+
- type: f1
|
32 |
+
value: 82.343
|
33 |
+
name: F1
|
34 |
+
- task:
|
35 |
+
type: question-answering
|
36 |
+
name: Question Answering
|
37 |
+
dataset:
|
38 |
+
name: squad
|
39 |
+
type: squad
|
40 |
+
config: plain_text
|
41 |
+
split: validation
|
42 |
+
metrics:
|
43 |
+
- type: exact_match
|
44 |
+
value: 85.894
|
45 |
+
name: Exact Match
|
46 |
+
- type: f1
|
47 |
+
value: 91.298
|
48 |
+
name: F1
|
49 |
+
- task:
|
50 |
+
type: question-answering
|
51 |
+
name: Question Answering
|
52 |
+
dataset:
|
53 |
+
name: adversarial_qa
|
54 |
+
type: adversarial_qa
|
55 |
+
config: adversarialQA
|
56 |
+
split: validation
|
57 |
+
metrics:
|
58 |
+
- type: exact_match
|
59 |
+
value: 44.867
|
60 |
+
name: Exact Match
|
61 |
+
- type: f1
|
62 |
+
value: 55.996
|
63 |
+
name: F1
|
64 |
+
- task:
|
65 |
+
type: question-answering
|
66 |
+
name: Question Answering
|
67 |
+
dataset:
|
68 |
+
name: squad_adversarial
|
69 |
+
type: squad_adversarial
|
70 |
+
config: AddOneSent
|
71 |
+
split: validation
|
72 |
+
metrics:
|
73 |
+
- type: exact_match
|
74 |
+
value: 80.190
|
75 |
+
name: Exact Match
|
76 |
+
- type: f1
|
77 |
+
value: 85.028
|
78 |
+
name: F1
|
79 |
+
- task:
|
80 |
+
type: question-answering
|
81 |
+
name: Question Answering
|
82 |
+
dataset:
|
83 |
+
name: squadshifts
|
84 |
+
type: squadshifts
|
85 |
+
config: amazon
|
86 |
+
split: test
|
87 |
+
metrics:
|
88 |
+
- type: exact_match
|
89 |
+
value: 69.712
|
90 |
+
name: Exact Match
|
91 |
+
- type: f1
|
92 |
+
value: 81.171
|
93 |
+
name: F1
|
94 |
+
- task:
|
95 |
+
type: question-answering
|
96 |
+
name: Question Answering
|
97 |
+
dataset:
|
98 |
+
name: squadshifts
|
99 |
+
type: squadshifts
|
100 |
+
config: new_wiki
|
101 |
+
split: test
|
102 |
+
metrics:
|
103 |
+
- type: exact_match
|
104 |
+
value: 81.544
|
105 |
+
name: Exact Match
|
106 |
+
- type: f1
|
107 |
+
value: 89.782
|
108 |
+
name: F1
|
109 |
+
- task:
|
110 |
+
type: question-answering
|
111 |
+
name: Question Answering
|
112 |
+
dataset:
|
113 |
+
name: squadshifts
|
114 |
+
type: squadshifts
|
115 |
+
config: nyt
|
116 |
+
split: test
|
117 |
+
metrics:
|
118 |
+
- type: exact_match
|
119 |
+
value: 80.05
|
120 |
+
name: Exact Match
|
121 |
+
- type: f1
|
122 |
+
value: 87.756
|
123 |
+
name: F1
|
124 |
+
- task:
|
125 |
+
type: question-answering
|
126 |
+
name: Question Answering
|
127 |
+
dataset:
|
128 |
+
name: squadshifts
|
129 |
+
type: squadshifts
|
130 |
+
config: reddit
|
131 |
+
split: test
|
132 |
+
metrics:
|
133 |
+
- type: exact_match
|
134 |
+
value: 60.481
|
135 |
+
name: Exact Match
|
136 |
+
- type: f1
|
137 |
+
value: 68.686
|
138 |
+
name: F1
|
139 |
---
|
140 |
+
|
141 |
+
# deberta-v3-base for Extractive QA
|
142 |
+
|
143 |
+
This is the [deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering.
|
144 |
+
|
145 |
+
## Overview
|
146 |
+
**Language model:** deberta-v3-base
|
147 |
+
**Language:** English
|
148 |
+
**Downstream-task:** Extractive QA
|
149 |
+
**Training data:** SQuAD 2.0
|
150 |
+
**Eval data:** SQuAD 2.0
|
151 |
+
**Infrastructure**: 1x NVIDIA 3070
|
152 |
+
|
153 |
+
## Model Usage
|
154 |
+
```python
|
155 |
+
import torch
|
156 |
+
from transformers import(
|
157 |
+
AutoModelForQuestionAnswering,
|
158 |
+
AutoTokenizer,
|
159 |
+
pipeline
|
160 |
+
)
|
161 |
+
model_name = "sjrhuschlee/deberta-v3-base-squad2-ext-v1"
|
162 |
+
|
163 |
+
# a) Using pipelines
|
164 |
+
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
165 |
+
qa_input = {
|
166 |
+
'question': 'Where do I live?',
|
167 |
+
'context': 'My name is Sarah and I live in London'
|
168 |
+
}
|
169 |
+
res = nlp(qa_input)
|
170 |
+
# {'score': 0.984, 'start': 30, 'end': 37, 'answer': ' London'}
|
171 |
+
|
172 |
+
# b) Load model & tokenizer
|
173 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
174 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
175 |
+
|
176 |
+
question = 'Where do I live?'
|
177 |
+
context = 'My name is Sarah and I live in London'
|
178 |
+
encoding = tokenizer(question, context, return_tensors="pt")
|
179 |
+
start_scores, end_scores = model(
|
180 |
+
encoding["input_ids"],
|
181 |
+
attention_mask=encoding["attention_mask"],
|
182 |
+
return_dict=False
|
183 |
+
)
|
184 |
+
|
185 |
+
all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist())
|
186 |
+
answer_tokens = all_tokens[torch.argmax(start_scores):torch.argmax(end_scores) + 1]
|
187 |
+
answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens))
|
188 |
+
# 'London'
|
189 |
+
```
|
190 |
+
|
191 |
+
## Metrics
|
192 |
+
|
193 |
+
```bash
|
194 |
+
# Squad v2
|
195 |
+
{
|
196 |
+
"eval_HasAns_exact": 84.36234817813765,
|
197 |
+
"eval_HasAns_f1": 90.09079905537246,
|
198 |
+
"eval_HasAns_total": 5928,
|
199 |
+
"eval_NoAns_exact": 74.61732548359966,
|
200 |
+
"eval_NoAns_f1": 74.61732548359966,
|
201 |
+
"eval_NoAns_total": 5945,
|
202 |
+
"eval_best_exact": 79.45759285774446,
|
203 |
+
"eval_best_exact_thresh": 0.0,
|
204 |
+
"eval_best_f1": 82.31771724081922,
|
205 |
+
"eval_best_f1_thresh": 0.0,
|
206 |
+
"eval_exact": 79.48286027120358,
|
207 |
+
"eval_f1": 82.34298465427844,
|
208 |
+
"eval_runtime": 109.7262,
|
209 |
+
"eval_samples": 11951,
|
210 |
+
"eval_samples_per_second": 108.917,
|
211 |
+
"eval_steps_per_second": 4.539,
|
212 |
+
"eval_total": 11873
|
213 |
+
}
|
214 |
+
|
215 |
+
# Squad
|
216 |
+
{
|
217 |
+
"eval_exact": 85.89403973509934,
|
218 |
+
"eval_f1": 91.2982923196374,
|
219 |
+
"eval_runtime": 96.6499,
|
220 |
+
"eval_samples": 10618,
|
221 |
+
"eval_samples_per_second": 109.86,
|
222 |
+
"eval_steps_per_second": 4.584,
|
223 |
+
"eval_total": 10570
|
224 |
+
}
|
225 |
+
```
|
226 |
+
|
227 |
+
## Training procedure
|
228 |
+
|
229 |
+
### Training hyperparameters
|
230 |
+
|
231 |
+
The following hyperparameters were used during training:
|
232 |
+
- learning_rate: 1e-06
|
233 |
+
- train_batch_size: 12
|
234 |
+
- eval_batch_size: 8
|
235 |
+
- seed: 42
|
236 |
+
- gradient_accumulation_steps: 8
|
237 |
+
- total_train_batch_size: 96
|
238 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
239 |
+
- lr_scheduler_type: linear
|
240 |
+
- lr_scheduler_warmup_ratio: 0.1
|
241 |
+
- num_epochs: 3.0
|
242 |
+
|
243 |
+
### Framework versions
|
244 |
+
|
245 |
+
- Transformers 4.31.0.dev0
|