Upload PPO LunarLander-v2 somewhat trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -818.93 +/- 350.10
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9088c19940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9088c199e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9088c19a80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9088c19b20>", "_build": "<function ActorCriticPolicy._build at 0x7f9088c19bc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9088c19c60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9088c19d00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9088c19da0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9088c19e40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9088c19ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9088c19f80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9088c1a020>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9088c0ba40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 65536, "_total_timesteps": 100, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688382979337970135, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAJpmyjyzCq0/OV+HPn35qr5Repe8Al66vQAAAAAAAAAAAMIVP4nKDj7QfrQ/kZSnv+aNjL+VNgW/AAAAAAAAAABNBFk9Cmi6P8/Frj6lqvG8OQ9/vCgPnb0AAAAAAAAAAH0xoj5marI/+7w6P3V4zr41b8a+PHCxvQAAAAAAAAAA+vuCPo3Dbz9XMxA/4nNev9aRRr7+ErU9AAAAAAAAAAALmMm+/2EnPwhp/b0eoIy/NlQCv93xV74AAAAAAAAAAFoR+D4ruF0/Jb9uP2wJWL87bzi/445pvgAAAAAAAAAAAMAUuushtD/jgGu9sm4lvqQoLjpuYVU8AAAAAAAAAACmSke+8+zOP3vH7r4C/Wm8TIZQPsxRST4AAAAAAAAAAE3a1D2Iza8/80phPpvnnr7RHLc9aJTAPQAAAAAAAAAAkByjPsD+TT8uk98+B1tiv2jGgzvSCbs9AAAAAAAAAADjHls/atfTPm97jT8KTKi/O0USvk3epT4AAAAAAAAAAHJADb+vtwE9YkKFv4zvtr/ilB4/DBqTPgAAAAAAAAAADQy5vXqqvz/ARZa+A8GwvoyWHj/oy4o+AAAAAAAAAACmrgU+GTyoPzjVWz9y9q2+rdI+vmmTmr4AAAAAAAAAAADJnD2sGrg/iqyrPiD5272K9IC8aOVuvQAAAAAAAAAAIzLePrP0Pj8GJn4/BpV3v2zhQr+j29G+AAAAAAAAAACzAvA9UtajP60STz+bzAO/067Uvbc3wL0AAAAAAAAAAACY2jxU1Ic/G1dQvVlmB78yLDc+G6LjPQAAAAAAAAAAZjrpPKUcqz+CcEQ+p9OYvimpAr0Ysqe9AAAAAAAAAABjb1e+6egFP/aG1r6yF5q/1n2iPpCD4D0AAAAAAAAAACu4o76RYpI/WPJev3CbNr9aZ3o/GvQCPwAAAAAAAAAADcS3PTFWmD82XBI/D9c7v0ZLLb3CmLu9AAAAAAAAAAAaDxq9hP+iPyikub4eADu/YFo5Pa6zjTwAAAAAAAAAAELerL78hNI/ywthv/kz6r3flpY+BWBePgAAAAAAAAAA4Pw8Pl/aqD91/9Y+4LfovsXPob79sE68AAAAAAAAAAAzOTa8uUK/PyJPFb4JXdw+EPTku/1P6LwAAAAAAAAAAPMRL77mBcs/5RdYvyvLlD56FSM+qArZPQAAAAAAAAAA5toavW4Vvj9tXzm+d7SoOws57rwz4jW+AAAAAAAAAABWGI0+RynEPw0VUT+lO0e+kvt4vq2rG74AAAAAAAAAAHPHor21aEU+FNgWPkdipL+dolS/TLzFvgAAAAAAAAAAAHpNPGnHiz94UXy8bgciv43nuj0r5VM+AAAAAAAAAAD26Y8+TkCJPyrrCT/rODC/4qgrPfoBID4AAAAAAAAAAM1ClDzisa8/eIfnPq6U3L5Ub4C8km2QvQAAAAAAAAAAs8oDPcgVtj/iYik/MStNPb50SL2jhmm+AAAAAAAAAABmtuE98sEXPwSrkT5P/I2/YUvOvtUyRr4AAAAAAAAAAG1YuT4KGYw+RXzqPp3gqL/BiNO9/bl8PgAAAAAAAAAAAPPIPF9otD8iGSA/IEQ6vbf5yLxiXge+AAAAAAAAAACa70A8S/SWP6XkvT39lRS/X2Y1vofsNb4AAAAAAAAAAJpvRj1CaUE/qIkmPmz+RL9gw3y9SzpzPAAAAAAAAAAAZouzPFKApj9zc1M9ay3Nvh+lJb0C0sc9AAAAAAAAAADN8E09P8bRPwoLLD5it1E+xgzIPCrXnD0AAAAAAAAAAM1Q3Ls+Lao/6B9ivSH17r4Q5AW9+RINvgAAAAAAAAAAwHs5vmIiKT4WRi6+ZJ+jv2AIF74vJTw9AAAAAAAAAABz+2c+FuSXP1+9Hj8hQiS/+hnGvuzBor4AAAAAAAAAANNJAD7oiGU/bs3RPmHfPL8/dem+0iJsvgAAAAAAAAAAdrKWvlMYsD8jQn2/4jSQvodBIz9nsRQ/AAAAAAAAAADAs/8+crqYP+3aWz923ku/cPkIv4pqqb4AAAAAAAAAAGb0Tz6FiBw/RSK7Po24kL+wxPE6aLUQPQAAAAAAAAAATS/WPsAWmD/TDGA/dCAhv9WVGL8GZxu+AAAAAAAAAABg2To+6ThTPzU86z6HCWK/8tfWPDvUjjwAAAAAAAAAAIBBxz0/LLc/ghsrP3f77rnZlZi9npAJvQAAAAAAAAAA5qCgvVj/jT+121q+W1trv8AxPT897dQ+AAAAAAAAAAA7TMy+IxH7PpG/Ir/6f5+/l7OhPnw6JT4AAAAAAAAAALqyTb9tiys+1QTNv7T+v79g56g/SmJLPgAAAAAAAAAAzYUsvQ8Soz/Wdc++vI86vxgj+zyClX+8AAAAAAAAAADzTAy+xh98P0A2jL6OF1C/qyw+PtaW/T0AAAAAAAAAAA260D2WbaE/CrFePrK3Kb80/4C+cJTSvQAAAAAAAAAABgt0PlfLnz+ihi0/J70Gv3WNNL6ejSW9AAAAAAAAAACtzhm+VVKlP6tjPL/W9dq+SQ5FPt4e4D0AAAAAAAAAAGBvWb4sUL0/ZXdVv8Q3Gj3e6Hw+kgAPPgAAAAAAAAAAmuHgOwEYtD9O8zE/xzczvgYuArzQOyG+AAAAAAAAAAAzaZ29wqeyP7tN5r62kzK+soG6PWIPhz0AAAAAAAAAADNbibwakLA/DFWivRLIiL6N4A48WjVNOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -654.36, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFvL+0gKWs2MAWyUS2CMAXSUR0AYDrjYI0IkdX2UKGgGR8BzTUiGFi8WaAdLRGgIR0AYCx2St/4JdX2UKGgGR8BinxFiKBNFaAdLYGgIR0AYCwC8vmHQdX2UKGgGR8BjeAyj59E1aAdLQmgIR0AYD8GcFyJbdX2UKGgGR8B11LT3IuGsaAdLeGgIR0AYHnSv1UVBdX2UKGgGR8BeRE5lvqC6aAdLZmgIR0AYGoegctGvdX2UKGgGR8B5eB5qubI+aAdLaWgIR0AYIDnvDxb0dX2UKGgGR8BZC4QarFOxaAdLWGgIR0AYMgX/HYHxdX2UKGgGR8BaZ0s8PnSwaAdLOmgIR0AYMlByCFsYdX2UKGgGR8BgQD0e2d/baAdLZWgIR0AYOMhouf29dX2UKGgGR8BUdTH4oJAuaAdLRWgIR0AYOhYeT3ZgdX2UKGgGR8BlSY1gpjMFaAdLU2gIR0AYVdszl90BdX2UKGgGR8BRGcTSLIgeaAdLTmgIR0AYZA+pwS8KdX2UKGgGR8BeUERjBl+WaAdLPmgIR0AYaR6nivPkdX2UKGgGR8BfDqwD/2kBaAdLYWgIR0AYb0ulGgBcdX2UKGgGR8BYeQieNDMNaAdLbGgIR0AYh+KCQLeAdX2UKGgGR8BfpU8/2TPjaAdLXGgIR0AYh5Pdl/YrdX2UKGgGR8BoGV8eCCjDaAdLPmgIR0AYhMHryDqXdX2UKGgGR8BgLGTgVGkOaAdLTWgIR0AYldQfp2U0dX2UKGgGR8BwxW1kUbkwaAdLaWgIR0AYlCRfWtlqdX2UKGgGR8B3Gq4z7/GVaAdLYGgIR0AYoEU0vXbudX2UKGgGR8B0yu1lXiiqaAdLW2gIR0AYm34Kx9ofdX2UKGgGR8Bl9BfhMrVfaAdLPmgIR0AYrms/6frbdX2UKGgGR8B2FO2KEWZaaAdLYWgIR0AYtum78Nx3dX2UKGgGR8BsaYRwqAjIaAdLSWgIR0AYy7QLNOdodX2UKGgGR8Bj18ep4rz5aAdLSWgIR0AYy6BiCrcTdX2UKGgGR8BSMPVVghKUaAdLSmgIR0AYyjQAuIykdX2UKGgGR8B2ErwsoUi7aAdLbmgIR0AY03YL9deIdX2UKGgGR8BXqFU+9rXUaAdLQWgIR0AY1JcxCY1HdX2UKGgGR8Bwnw6Oo5xSaAdLWmgIR0AY6QV9F4LUdX2UKGgGR8Bh7Pa11GLDaAdLOmgIR0AY9xdY4hlldX2UKGgGR8BVhm5Dqnm8aAdLSGgIR0AZBiWmgrYodX2UKGgGR8BgBaqp97WvaAdLYmgIR0AY/kCFK02MdX2UKGgGR8BZW/n8sMAnaAdLd2gIR0AZEMRYigTRdX2UKGgGR8BqXLpPhybQaAdLiGgIR0AZDvnbItDldX2UKGgGR8Bd1PuTibUgaAdLXGgIR0AZGC/XXiBHdX2UKGgGR8BXfzTKDCgsaAdLe2gIR0AZFQEZBLPEdX2UKGgGR8BnHnHaN+9baAdLZ2gIR0AZGdtl7MPjdX2UKGgGR8BgWsgwGnn/aAdLTmgIR0AZIvPC2tuDdX2UKGgGR8BpxOrZJ04jaAdLb2gIR0AZK9cry1/ldX2UKGgGR8BfkRjWkJrtaAdLUGgIR0AZJuHerMkhdX2UKGgGR8Bh/Bh+fAbiaAdLQ2gIR0AZJQAMlTm5dX2UKGgGR8BYyf/FR51OaAdLSmgIR0AZMI7eVLSNdX2UKGgGR8Bzc8Cih37laAdLYGgIR0AZS1Bt1p0wdX2UKGgGR8BuBgIhQm/naAdLaWgIR0AZWoaUA1ejdX2UKGgGR8BMApkGzKLbaAdLO2gIR0AZVPsRg7YDdX2UKGgGR8ByfUkrwvxpaAdLUWgIR0AZV+pfhMrVdX2UKGgGR8BVeYPXkHUuaAdLT2gIR0AZYMtsenyedX2UKGgGR8BnVbksBhhIaAdLPGgIR0AZgNI9TxXodX2UKGgGR8BZTaAjIJZ4aAdLR2gIR0AZhGUfPompdX2UKGgGR8BTqV89fTkRaAdLSGgIR0AZiJLuhK15dX2UKGgGR8BS0J+2E0zkaAdLQmgIR0AZiuIRAbADdX2UKGgGR8BfICAMDwH8aAdLY2gIR0AZk3Q2MsH0dX2UKGgGR8Bslx35eqrBaAdLamgIR0AZpG6PKdQPdX2UKGgGR8BX+34wh4dIaAdLSmgIR0AZrc1wYLssdX2UKGgGR8BjzrKmsNlRaAdLb2gIR0AZsaef7JnydX2UKGgGR8BgnHoxHoX9aAdLVWgIR0AZwuSOinHedX2UKGgGR8BgSQ1WKdhBaAdLQGgIR0AZzNB4Uvf1dX2UKGgGR8BgnCptJnQIaAdLT2gIR0AZ2bUgB91EdX2UKGgGR8B6Rb5dnkDIaAdLWmgIR0AZ2aF23azvdX2UKGgGR8BX7hj8UEgXaAdLR2gIR0AZ5bTtsvZidX2UKGgGR8Bu0q6pYLb6aAdLhWgIR0AZ7J2dNFjNdX2UKGgGR8Bs2qaRZEDyaAdLVWgIR0AZ6HdoFmnPdX2UKGgGR8B7VTOE/SpjaAdLWWgIR0AZ5klNUOurdX2UKGgGR8By9y07bL2YaAdLVmgIR0AZ8qI7/4qPdX2UKGgGR8Bm6gjUutfYaAdLeGgIR0AaBFNL127ndX2UKGgGR8B6Q1RuTA32aAdLX2gIR0AaBGWldkaudX2UKGgGR8BgatpTMqz7aAdLOWgIR0AaDU7Sy+pPdX2UKGgGR8BnzxazNUwSaAdLVWgIR0AaFq59Vmz0dX2UKGgGR8A3RziCJ40NaAdLkWgIR0AaEiMYMvytdX2UKGgGR8BlKEP8Q7LdaAdLRmgIR0AaIHGCI1tPdX2UKGgGR8AZU0tRNyo5aAdLV2gIR0AaI0sOG0u2dX2UKGgGR8BQEvDLr5ZbaAdLTWgIR0AaIUSIxgy/dX2UKGgGR8BX+B7iQ1aXaAdLWmgIR0AaLF72L5ymdX2UKGgGR8BXo9pM6BAfaAdLaWgIR0AaL8O09hZydX2UKGgGR8BwiJTzd1uBaAdLS2gIR0AaOmfoRqXXdX2UKGgGR8BitBtk4FRpaAdLWWgIR0AaXJvHcUM5dX2UKGgGR8Bcv3HWBjFyaAdLimgIR0AagQL/jsD5dX2UKGgGR8BB2rPUrkKeaAdLR2gIR0AahQZXMhX9dX2UKGgGR8BpJzaXa8HwaAdLbWgIR0Aag1KoQ4CIdX2UKGgGR8BS7m5+YtxuaAdLPmgIR0Aaf6GgzxgBdX2UKGgGR8BhDB0U47zTaAdLV2gIR0AahN47ihnKdX2UKGgGR8BydxuP3i71aAdLiWgIR0Aalr/KhcqwdX2UKGgGR8BdBgQUYbbUaAdLf2gIR0AaljI7vG6xdX2UKGgGR8BjVBbwBo25aAdLgmgIR0Aapv99+gDidX2UKGgGR8B0ejTF2mpEaAdLYGgIR0AapOLzf779dX2UKGgGR8BuNg5HVf/naAdLPWgIR0Aao7dSEUTMdX2UKGgGR8BEJ7kGRmseaAdLYWgIR0Aaqg8KXv6TdX2UKGgGR0Aw5c5bQkX2aAdLRGgIR0Aaqe7L+xW1dX2UKGgGR8Bb7wyZa3ZxaAdLS2gIR0AapEhJRO1wdX2UKGgGR8BYlJCKJl8PaAdLQWgIR0AayDFqBVdYdX2UKGgGR8BlZ3PVurIYaAdLTmgIR0Aaw/X5FgDzdX2UKGgGR8BmfkxsVLzxaAdLS2gIR0AavlS0jTrndX2UKGgGR8BmUL3Ehq0uaAdLWmgIR0AaxggHNX5ndX2UKGgGR8BgevKhcqvvaAdLQWgIR0AazoSteUpvdX2UKGgGR8BgA6gK4QSSaAdLa2gIR0Aa3PNVzZHvdX2UKGgGR8Bdi4uscQyzaAdLUmgIR0Aa4sFt8/lidX2UKGgGR8Bg7Vt0mtyQaAdLN2gIR0Aa4kcCHRCydX2UKGgGR8BtP7DIikftaAdLa2gIR0Aa970Fr2xqdX2UKGgGR8BqBt+d9UjtaAdLYGgIR0Aa7eTFERapdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVCAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGMvaG9tZS9vbGF2L2Rldi9hbmFjb25kYTMvZW52cy9odWctcmwvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxjL2hvbWUvb2xhdi9kZXYvYW5hY29uZGEzL2VudnMvaHVnLXJsL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVCAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGMvaG9tZS9vbGF2L2Rldi9hbmFjb25kYTMvZW52cy9odWctcmwvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxjL2hvbWUvb2xhdi9kZXYvYW5hY29uZGEzL2VudnMvaHVnLXJsL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.0-76-generic-x86_64-with-glibc2.35 # 83-Ubuntu SMP Thu Jun 15 19:16:32 UTC 2023", "Python": "3.11.3", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1", "GPU Enabled": "True", "Numpy": "1.25.0", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.24.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0277ae679a2e1fa607f43c35f998030f82d60432b61b1580346504d8f5de8d91
|
3 |
+
size 148922
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9088c19940>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9088c199e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9088c19a80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9088c19b20>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9088c19bc0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9088c19c60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9088c19d00>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9088c19da0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9088c19e40>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9088c19ee0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9088c19f80>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9088c1a020>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f9088c0ba40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 65536,
|
25 |
+
"_total_timesteps": 100,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1688382979337970135,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAJpmyjyzCq0/OV+HPn35qr5Repe8Al66vQAAAAAAAAAAAMIVP4nKDj7QfrQ/kZSnv+aNjL+VNgW/AAAAAAAAAABNBFk9Cmi6P8/Frj6lqvG8OQ9/vCgPnb0AAAAAAAAAAH0xoj5marI/+7w6P3V4zr41b8a+PHCxvQAAAAAAAAAA+vuCPo3Dbz9XMxA/4nNev9aRRr7+ErU9AAAAAAAAAAALmMm+/2EnPwhp/b0eoIy/NlQCv93xV74AAAAAAAAAAFoR+D4ruF0/Jb9uP2wJWL87bzi/445pvgAAAAAAAAAAAMAUuushtD/jgGu9sm4lvqQoLjpuYVU8AAAAAAAAAACmSke+8+zOP3vH7r4C/Wm8TIZQPsxRST4AAAAAAAAAAE3a1D2Iza8/80phPpvnnr7RHLc9aJTAPQAAAAAAAAAAkByjPsD+TT8uk98+B1tiv2jGgzvSCbs9AAAAAAAAAADjHls/atfTPm97jT8KTKi/O0USvk3epT4AAAAAAAAAAHJADb+vtwE9YkKFv4zvtr/ilB4/DBqTPgAAAAAAAAAADQy5vXqqvz/ARZa+A8GwvoyWHj/oy4o+AAAAAAAAAACmrgU+GTyoPzjVWz9y9q2+rdI+vmmTmr4AAAAAAAAAAADJnD2sGrg/iqyrPiD5272K9IC8aOVuvQAAAAAAAAAAIzLePrP0Pj8GJn4/BpV3v2zhQr+j29G+AAAAAAAAAACzAvA9UtajP60STz+bzAO/067Uvbc3wL0AAAAAAAAAAACY2jxU1Ic/G1dQvVlmB78yLDc+G6LjPQAAAAAAAAAAZjrpPKUcqz+CcEQ+p9OYvimpAr0Ysqe9AAAAAAAAAABjb1e+6egFP/aG1r6yF5q/1n2iPpCD4D0AAAAAAAAAACu4o76RYpI/WPJev3CbNr9aZ3o/GvQCPwAAAAAAAAAADcS3PTFWmD82XBI/D9c7v0ZLLb3CmLu9AAAAAAAAAAAaDxq9hP+iPyikub4eADu/YFo5Pa6zjTwAAAAAAAAAAELerL78hNI/ywthv/kz6r3flpY+BWBePgAAAAAAAAAA4Pw8Pl/aqD91/9Y+4LfovsXPob79sE68AAAAAAAAAAAzOTa8uUK/PyJPFb4JXdw+EPTku/1P6LwAAAAAAAAAAPMRL77mBcs/5RdYvyvLlD56FSM+qArZPQAAAAAAAAAA5toavW4Vvj9tXzm+d7SoOws57rwz4jW+AAAAAAAAAABWGI0+RynEPw0VUT+lO0e+kvt4vq2rG74AAAAAAAAAAHPHor21aEU+FNgWPkdipL+dolS/TLzFvgAAAAAAAAAAAHpNPGnHiz94UXy8bgciv43nuj0r5VM+AAAAAAAAAAD26Y8+TkCJPyrrCT/rODC/4qgrPfoBID4AAAAAAAAAAM1ClDzisa8/eIfnPq6U3L5Ub4C8km2QvQAAAAAAAAAAs8oDPcgVtj/iYik/MStNPb50SL2jhmm+AAAAAAAAAABmtuE98sEXPwSrkT5P/I2/YUvOvtUyRr4AAAAAAAAAAG1YuT4KGYw+RXzqPp3gqL/BiNO9/bl8PgAAAAAAAAAAAPPIPF9otD8iGSA/IEQ6vbf5yLxiXge+AAAAAAAAAACa70A8S/SWP6XkvT39lRS/X2Y1vofsNb4AAAAAAAAAAJpvRj1CaUE/qIkmPmz+RL9gw3y9SzpzPAAAAAAAAAAAZouzPFKApj9zc1M9ay3Nvh+lJb0C0sc9AAAAAAAAAADN8E09P8bRPwoLLD5it1E+xgzIPCrXnD0AAAAAAAAAAM1Q3Ls+Lao/6B9ivSH17r4Q5AW9+RINvgAAAAAAAAAAwHs5vmIiKT4WRi6+ZJ+jv2AIF74vJTw9AAAAAAAAAABz+2c+FuSXP1+9Hj8hQiS/+hnGvuzBor4AAAAAAAAAANNJAD7oiGU/bs3RPmHfPL8/dem+0iJsvgAAAAAAAAAAdrKWvlMYsD8jQn2/4jSQvodBIz9nsRQ/AAAAAAAAAADAs/8+crqYP+3aWz923ku/cPkIv4pqqb4AAAAAAAAAAGb0Tz6FiBw/RSK7Po24kL+wxPE6aLUQPQAAAAAAAAAATS/WPsAWmD/TDGA/dCAhv9WVGL8GZxu+AAAAAAAAAABg2To+6ThTPzU86z6HCWK/8tfWPDvUjjwAAAAAAAAAAIBBxz0/LLc/ghsrP3f77rnZlZi9npAJvQAAAAAAAAAA5qCgvVj/jT+121q+W1trv8AxPT897dQ+AAAAAAAAAAA7TMy+IxH7PpG/Ir/6f5+/l7OhPnw6JT4AAAAAAAAAALqyTb9tiys+1QTNv7T+v79g56g/SmJLPgAAAAAAAAAAzYUsvQ8Soz/Wdc++vI86vxgj+zyClX+8AAAAAAAAAADzTAy+xh98P0A2jL6OF1C/qyw+PtaW/T0AAAAAAAAAAA260D2WbaE/CrFePrK3Kb80/4C+cJTSvQAAAAAAAAAABgt0PlfLnz+ihi0/J70Gv3WNNL6ejSW9AAAAAAAAAACtzhm+VVKlP6tjPL/W9dq+SQ5FPt4e4D0AAAAAAAAAAGBvWb4sUL0/ZXdVv8Q3Gj3e6Hw+kgAPPgAAAAAAAAAAmuHgOwEYtD9O8zE/xzczvgYuArzQOyG+AAAAAAAAAAAzaZ29wqeyP7tN5r62kzK+soG6PWIPhz0AAAAAAAAAADNbibwakLA/DFWivRLIiL6N4A48WjVNOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -654.36,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFvL+0gKWs2MAWyUS2CMAXSUR0AYDrjYI0IkdX2UKGgGR8BzTUiGFi8WaAdLRGgIR0AYCx2St/4JdX2UKGgGR8BinxFiKBNFaAdLYGgIR0AYCwC8vmHQdX2UKGgGR8BjeAyj59E1aAdLQmgIR0AYD8GcFyJbdX2UKGgGR8B11LT3IuGsaAdLeGgIR0AYHnSv1UVBdX2UKGgGR8BeRE5lvqC6aAdLZmgIR0AYGoegctGvdX2UKGgGR8B5eB5qubI+aAdLaWgIR0AYIDnvDxb0dX2UKGgGR8BZC4QarFOxaAdLWGgIR0AYMgX/HYHxdX2UKGgGR8BaZ0s8PnSwaAdLOmgIR0AYMlByCFsYdX2UKGgGR8BgQD0e2d/baAdLZWgIR0AYOMhouf29dX2UKGgGR8BUdTH4oJAuaAdLRWgIR0AYOhYeT3ZgdX2UKGgGR8BlSY1gpjMFaAdLU2gIR0AYVdszl90BdX2UKGgGR8BRGcTSLIgeaAdLTmgIR0AYZA+pwS8KdX2UKGgGR8BeUERjBl+WaAdLPmgIR0AYaR6nivPkdX2UKGgGR8BfDqwD/2kBaAdLYWgIR0AYb0ulGgBcdX2UKGgGR8BYeQieNDMNaAdLbGgIR0AYh+KCQLeAdX2UKGgGR8BfpU8/2TPjaAdLXGgIR0AYh5Pdl/YrdX2UKGgGR8BoGV8eCCjDaAdLPmgIR0AYhMHryDqXdX2UKGgGR8BgLGTgVGkOaAdLTWgIR0AYldQfp2U0dX2UKGgGR8BwxW1kUbkwaAdLaWgIR0AYlCRfWtlqdX2UKGgGR8B3Gq4z7/GVaAdLYGgIR0AYoEU0vXbudX2UKGgGR8B0yu1lXiiqaAdLW2gIR0AYm34Kx9ofdX2UKGgGR8Bl9BfhMrVfaAdLPmgIR0AYrms/6frbdX2UKGgGR8B2FO2KEWZaaAdLYWgIR0AYtum78Nx3dX2UKGgGR8BsaYRwqAjIaAdLSWgIR0AYy7QLNOdodX2UKGgGR8Bj18ep4rz5aAdLSWgIR0AYy6BiCrcTdX2UKGgGR8BSMPVVghKUaAdLSmgIR0AYyjQAuIykdX2UKGgGR8B2ErwsoUi7aAdLbmgIR0AY03YL9deIdX2UKGgGR8BXqFU+9rXUaAdLQWgIR0AY1JcxCY1HdX2UKGgGR8Bwnw6Oo5xSaAdLWmgIR0AY6QV9F4LUdX2UKGgGR8Bh7Pa11GLDaAdLOmgIR0AY9xdY4hlldX2UKGgGR8BVhm5Dqnm8aAdLSGgIR0AZBiWmgrYodX2UKGgGR8BgBaqp97WvaAdLYmgIR0AY/kCFK02MdX2UKGgGR8BZW/n8sMAnaAdLd2gIR0AZEMRYigTRdX2UKGgGR8BqXLpPhybQaAdLiGgIR0AZDvnbItDldX2UKGgGR8Bd1PuTibUgaAdLXGgIR0AZGC/XXiBHdX2UKGgGR8BXfzTKDCgsaAdLe2gIR0AZFQEZBLPEdX2UKGgGR8BnHnHaN+9baAdLZ2gIR0AZGdtl7MPjdX2UKGgGR8BgWsgwGnn/aAdLTmgIR0AZIvPC2tuDdX2UKGgGR8BpxOrZJ04jaAdLb2gIR0AZK9cry1/ldX2UKGgGR8BfkRjWkJrtaAdLUGgIR0AZJuHerMkhdX2UKGgGR8Bh/Bh+fAbiaAdLQ2gIR0AZJQAMlTm5dX2UKGgGR8BYyf/FR51OaAdLSmgIR0AZMI7eVLSNdX2UKGgGR8Bzc8Cih37laAdLYGgIR0AZS1Bt1p0wdX2UKGgGR8BuBgIhQm/naAdLaWgIR0AZWoaUA1ejdX2UKGgGR8BMApkGzKLbaAdLO2gIR0AZVPsRg7YDdX2UKGgGR8ByfUkrwvxpaAdLUWgIR0AZV+pfhMrVdX2UKGgGR8BVeYPXkHUuaAdLT2gIR0AZYMtsenyedX2UKGgGR8BnVbksBhhIaAdLPGgIR0AZgNI9TxXodX2UKGgGR8BZTaAjIJZ4aAdLR2gIR0AZhGUfPompdX2UKGgGR8BTqV89fTkRaAdLSGgIR0AZiJLuhK15dX2UKGgGR8BS0J+2E0zkaAdLQmgIR0AZiuIRAbADdX2UKGgGR8BfICAMDwH8aAdLY2gIR0AZk3Q2MsH0dX2UKGgGR8Bslx35eqrBaAdLamgIR0AZpG6PKdQPdX2UKGgGR8BX+34wh4dIaAdLSmgIR0AZrc1wYLssdX2UKGgGR8BjzrKmsNlRaAdLb2gIR0AZsaef7JnydX2UKGgGR8BgnHoxHoX9aAdLVWgIR0AZwuSOinHedX2UKGgGR8BgSQ1WKdhBaAdLQGgIR0AZzNB4Uvf1dX2UKGgGR8BgnCptJnQIaAdLT2gIR0AZ2bUgB91EdX2UKGgGR8B6Rb5dnkDIaAdLWmgIR0AZ2aF23azvdX2UKGgGR8BX7hj8UEgXaAdLR2gIR0AZ5bTtsvZidX2UKGgGR8Bu0q6pYLb6aAdLhWgIR0AZ7J2dNFjNdX2UKGgGR8Bs2qaRZEDyaAdLVWgIR0AZ6HdoFmnPdX2UKGgGR8B7VTOE/SpjaAdLWWgIR0AZ5klNUOurdX2UKGgGR8By9y07bL2YaAdLVmgIR0AZ8qI7/4qPdX2UKGgGR8Bm6gjUutfYaAdLeGgIR0AaBFNL127ndX2UKGgGR8B6Q1RuTA32aAdLX2gIR0AaBGWldkaudX2UKGgGR8BgatpTMqz7aAdLOWgIR0AaDU7Sy+pPdX2UKGgGR8BnzxazNUwSaAdLVWgIR0AaFq59Vmz0dX2UKGgGR8A3RziCJ40NaAdLkWgIR0AaEiMYMvytdX2UKGgGR8BlKEP8Q7LdaAdLRmgIR0AaIHGCI1tPdX2UKGgGR8AZU0tRNyo5aAdLV2gIR0AaI0sOG0u2dX2UKGgGR8BQEvDLr5ZbaAdLTWgIR0AaIUSIxgy/dX2UKGgGR8BX+B7iQ1aXaAdLWmgIR0AaLF72L5ymdX2UKGgGR8BXo9pM6BAfaAdLaWgIR0AaL8O09hZydX2UKGgGR8BwiJTzd1uBaAdLS2gIR0AaOmfoRqXXdX2UKGgGR8BitBtk4FRpaAdLWWgIR0AaXJvHcUM5dX2UKGgGR8Bcv3HWBjFyaAdLimgIR0AagQL/jsD5dX2UKGgGR8BB2rPUrkKeaAdLR2gIR0AahQZXMhX9dX2UKGgGR8BpJzaXa8HwaAdLbWgIR0Aag1KoQ4CIdX2UKGgGR8BS7m5+YtxuaAdLPmgIR0Aaf6GgzxgBdX2UKGgGR8BhDB0U47zTaAdLV2gIR0AahN47ihnKdX2UKGgGR8BydxuP3i71aAdLiWgIR0Aalr/KhcqwdX2UKGgGR8BdBgQUYbbUaAdLf2gIR0AaljI7vG6xdX2UKGgGR8BjVBbwBo25aAdLgmgIR0Aapv99+gDidX2UKGgGR8B0ejTF2mpEaAdLYGgIR0AapOLzf779dX2UKGgGR8BuNg5HVf/naAdLPWgIR0Aao7dSEUTMdX2UKGgGR8BEJ7kGRmseaAdLYWgIR0Aaqg8KXv6TdX2UKGgGR0Aw5c5bQkX2aAdLRGgIR0Aaqe7L+xW1dX2UKGgGR8Bb7wyZa3ZxaAdLS2gIR0AapEhJRO1wdX2UKGgGR8BYlJCKJl8PaAdLQWgIR0AayDFqBVdYdX2UKGgGR8BlZ3PVurIYaAdLTmgIR0Aaw/X5FgDzdX2UKGgGR8BmfkxsVLzxaAdLS2gIR0AavlS0jTrndX2UKGgGR8BmUL3Ehq0uaAdLWmgIR0AaxggHNX5ndX2UKGgGR8BgevKhcqvvaAdLQWgIR0AazoSteUpvdX2UKGgGR8BgA6gK4QSSaAdLa2gIR0Aa3PNVzZHvdX2UKGgGR8Bdi4uscQyzaAdLUmgIR0Aa4sFt8/lidX2UKGgGR8Bg7Vt0mtyQaAdLN2gIR0Aa4kcCHRCydX2UKGgGR8BtP7DIikftaAdLa2gIR0Aa970Fr2xqdX2UKGgGR8BqBt+d9UjtaAdLYGgIR0Aa7eTFERapdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 4,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 64,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVCAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGMvaG9tZS9vbGF2L2Rldi9hbmFjb25kYTMvZW52cy9odWctcmwvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxjL2hvbWUvb2xhdi9kZXYvYW5hY29uZGEzL2VudnMvaHVnLXJsL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVCAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGMvaG9tZS9vbGF2L2Rldi9hbmFjb25kYTMvZW52cy9odWctcmwvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxjL2hvbWUvb2xhdi9kZXYvYW5hY29uZGEzL2VudnMvaHVnLXJsL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23ccf6b2f341b618ae12b6811ecd3b6d53d4cc015bdc5ead65c6452346378331
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a57db431284a84948425ffd84b48adf33448c6423c883e172a6ff604cf636df
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-76-generic-x86_64-with-glibc2.35 # 83-Ubuntu SMP Thu Jun 15 19:16:32 UTC 2023
|
2 |
+
- Python: 3.11.3
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.0
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.24.0
|
replay.mp4
ADDED
File without changes
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -818.9291070837528, "std_reward": 350.10125157488557, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-03T13:16:36.688047"}
|