Text Classification
Transformers
PyTorch
bert
Inference Endpoints
skirres commited on
Commit
53f7300
1 Parent(s): a5e0991

Model sources and card

Browse files
Files changed (4) hide show
  1. README.md +105 -0
  2. config.json +23 -0
  3. pytorch_model.bin +3 -0
  4. tokenizer.json +0 -0
README.md ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - de
4
+ - en
5
+ - es
6
+ - fr
7
+ ---
8
+
9
+ # Model Card for `passage-ranker-v1-XS-multilingual`
10
+
11
+ This model is a passage ranker developed by Sinequa. It produces a relevance score given a query-passage pair and is
12
+ used to order search results.
13
+
14
+ Model name: `passage-ranker-v1-XS-multilingual`
15
+
16
+ ## Supported Languages
17
+
18
+ The model was trained and tested in the following languages:
19
+
20
+ - English
21
+ - French
22
+ - German
23
+ - Spanish
24
+
25
+ ## Scores
26
+
27
+ | Metric | Value |
28
+ |:--------------------|------:|
29
+ | Relevance (NDCG@10) | 0.456 |
30
+
31
+ Note that the relevance score is computed as an average over 14 retrieval datasets (see
32
+ [details below](#evaluation-metrics)).
33
+
34
+ ## Inference Times
35
+
36
+ | GPU | Batch size 32 |
37
+ |:-----------|--------------:|
38
+ | NVIDIA A10 | 4 ms |
39
+ | NVIDIA T4 | 13 ms |
40
+
41
+ The inference times only measure the time the model takes to process a single batch, it does not include pre- or
42
+ post-processing steps like the tokenization. The reported times are measured using the
43
+ [FP16](https://en.wikipedia.org/wiki/Half-precision_floating-point_format) version of the model.
44
+
45
+ ## Requirements
46
+
47
+ - Minimal Sinequa version: 11.10.0
48
+ - GPU memory usage: 300 MiB
49
+
50
+ Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
51
+ size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
52
+ can be around 0.5 to 1 GiB depending on the used GPU.
53
+
54
+ ## Model Details
55
+
56
+ ### Overview
57
+
58
+ - Number of parameters: 16 million
59
+ - Base language model: Homegrown Sinequa BERT-Mini ([Paper](https://arxiv.org/abs/1908.08962)) pretrained in the four
60
+ supported languages
61
+ - Insensitive to casing and accents
62
+ - Training procedure: [MonoBERT](https://arxiv.org/abs/1901.04085)
63
+
64
+ ### Training Data
65
+
66
+ - MS MARCO Passage Ranking
67
+ ([Paper](https://arxiv.org/abs/1611.09268),
68
+ [Official Page](https://microsoft.github.io/msmarco/),
69
+ [English & translated datasets on the HF dataset hub](https://huggingface.co/datasets/unicamp-dl/mmarco))
70
+ - Original English dataset
71
+ - Translated datasets for the other three supported languages
72
+
73
+ ### Evaluation Metrics
74
+
75
+ To determine the relevance score, we averaged the results that we obtained when evaluating on the datasets of the
76
+ [BEIR benchmark](https://github.com/beir-cellar/beir). Note that all these datasets are in English.
77
+
78
+ | Dataset | NDCG@10 |
79
+ |:------------------|--------:|
80
+ | Average | 0.456 |
81
+ | | |
82
+ | Arguana | 0.517 |
83
+ | CLIMATE-FEVER | 0.159 |
84
+ | DBPedia Entity | 0.355 |
85
+ | FEVER | 0.733 |
86
+ | FiQA-2018 | 0.282 |
87
+ | HotpotQA | 0.688 |
88
+ | MS MARCO | 0.327 |
89
+ | NFCorpus | 0.341 |
90
+ | NQ | 0.441 |
91
+ | Quora | 0.768 |
92
+ | SCIDOCS | 0.143 |
93
+ | SciFact | 0.629 |
94
+ | TREC-COVID | 0.667 |
95
+ | Webis-Touche-2020 | 0.328 |
96
+
97
+ We evaluated the model on the datasets of the [MIRACL benchmark](https://github.com/project-miracl/miracl) to test its
98
+ multilingual capacities. Note that not all training languages are part of the benchmark, so we only report the metrics
99
+ for the existing languages.
100
+
101
+ | Language | NDCG@10 |
102
+ |:---------|--------:|
103
+ | French | 0.349 |
104
+ | German | 0.375 |
105
+ | Spanish | 0.417 |
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForSequenceClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 256,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 1024,
12
+ "layer_norm_eps": 1e-12,
13
+ "max_position_embeddings": 512,
14
+ "model_type": "bert",
15
+ "num_attention_heads": 4,
16
+ "num_hidden_layers": 4,
17
+ "pad_token_id": 0,
18
+ "position_embedding_type": "absolute",
19
+ "transformers_version": "4.23.1",
20
+ "type_vocab_size": 2,
21
+ "use_cache": true,
22
+ "vocab_size": 50099
23
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d083b39c499b785ed651719c01735eeb0a820e9bebc9b9afbedf8381733aa04
3
+ size 64758087
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff