skirres commited on
Commit
2137ccd
1 Parent(s): 5b7c51b

Correct dataset definition

Browse files
Files changed (1) hide show
  1. README.md +84 -85
README.md CHANGED
@@ -1,85 +1,84 @@
1
- ---
2
- language:
3
- - en
4
- ---
5
-
6
- # Model Card for `passage-ranker-v1-XS-en`
7
-
8
- This model is a passage ranker developed by Sinequa. It produces a relevance score given a query-passage pair and is
9
- used to order search results.
10
-
11
- Model name: `passage-ranker-v1-XS-en`
12
-
13
- ## Supported Languages
14
-
15
- The model was trained and tested in the following languages:
16
-
17
- - English
18
-
19
- ## Scores
20
-
21
- | Metric | Value |
22
- |:--------------------|------:|
23
- | Relevance (NDCG@10) | 0.438 |
24
-
25
- Note that the relevance score is computed as an average over 14 retrieval datasets (see
26
- [details below](#evaluation-metrics)).
27
-
28
- ## Inference Times
29
-
30
- | GPU | Batch size 32 |
31
- |:-----------|--------------:|
32
- | NVIDIA A10 | 8 ms |
33
- | NVIDIA T4 | 20 ms |
34
-
35
- The inference times only measure the time the model takes to process a single batch, it does not include pre- or
36
- post-processing steps like the tokenization.
37
-
38
- ## Requirements
39
-
40
- - Minimal Sinequa version: 11.10.0
41
- - GPU memory usage: 170 MiB
42
-
43
- Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
44
- size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
45
- can be around 0.5 to 1 GiB depending on the used GPU.
46
-
47
- ## Model Details
48
-
49
- ### Overview
50
-
51
- - Number of parameters: 11 million
52
- - Base language model: [English BERT-Mini](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4)
53
- - Insensitive to casing and accents
54
- - Training procedure: [MonoBERT](https://arxiv.org/abs/1901.04085)
55
-
56
- ### Training Data
57
-
58
- - MS MARCO Passage Ranking
59
- ([Paper](https://arxiv.org/abs/1611.09268),
60
- [Official Page](https://microsoft.github.io/msmarco/),
61
- [English dataset on the HF dataset hub](https://huggingface.co/datasets/unicamp-dl/mmarco))
62
-
63
- ### Evaluation Metrics
64
-
65
- To determine the relevance score, we averaged the results that we obtained when evaluating on the datasets of the
66
- [BEIR benchmark](https://github.com/beir-cellar/beir). Note that all these datasets are in English.
67
-
68
- | Dataset | NDCG@10 |
69
- |:------------------|--------:|
70
- | Average | 0.438 |
71
- | | |
72
- | Arguana | 0.524 |
73
- | CLIMATE-FEVER | 0.150 |
74
- | DBPedia Entity | 0.338 |
75
- | FEVER | 0.706 |
76
- | FiQA-2018 | 0.269 |
77
- | HotpotQA | 0.630 |
78
- | MS MARCO | 0.328 |
79
- | NFCorpus | 0.340 |
80
- | NQ | 0.429 |
81
- | Quora | 0.722 |
82
- | SCIDOCS | 0.141 |
83
- | SciFact | 0.627 |
84
- | TREC-COVID | 0.628 |
85
- | Webis-Touche-2020 | 0.306 |
 
1
+ ---
2
+ language:
3
+ - en
4
+ ---
5
+
6
+ # Model Card for `passage-ranker-v1-XS-en`
7
+
8
+ This model is a passage ranker developed by Sinequa. It produces a relevance score given a query-passage pair and is
9
+ used to order search results.
10
+
11
+ Model name: `passage-ranker-v1-XS-en`
12
+
13
+ ## Supported Languages
14
+
15
+ The model was trained and tested in the following languages:
16
+
17
+ - English
18
+
19
+ ## Scores
20
+
21
+ | Metric | Value |
22
+ |:--------------------|------:|
23
+ | Relevance (NDCG@10) | 0.438 |
24
+
25
+ Note that the relevance score is computed as an average over 14 retrieval datasets (see
26
+ [details below](#evaluation-metrics)).
27
+
28
+ ## Inference Times
29
+
30
+ | GPU | Batch size 32 |
31
+ |:-----------|--------------:|
32
+ | NVIDIA A10 | 8 ms |
33
+ | NVIDIA T4 | 20 ms |
34
+
35
+ The inference times only measure the time the model takes to process a single batch, it does not include pre- or
36
+ post-processing steps like the tokenization.
37
+
38
+ ## Requirements
39
+
40
+ - Minimal Sinequa version: 11.10.0
41
+ - GPU memory usage: 170 MiB
42
+
43
+ Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
44
+ size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
45
+ can be around 0.5 to 1 GiB depending on the used GPU.
46
+
47
+ ## Model Details
48
+
49
+ ### Overview
50
+
51
+ - Number of parameters: 11 million
52
+ - Base language model: [English BERT-Mini](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4)
53
+ - Insensitive to casing and accents
54
+ - Training procedure: [MonoBERT](https://arxiv.org/abs/1901.04085)
55
+
56
+ ### Training Data
57
+
58
+ - Probably-Asked Questions
59
+ ([Paper](https://arxiv.org/abs/2102.07033),
60
+ [Official Page](https://github.com/facebookresearch/PAQ))
61
+
62
+ ### Evaluation Metrics
63
+
64
+ To determine the relevance score, we averaged the results that we obtained when evaluating on the datasets of the
65
+ [BEIR benchmark](https://github.com/beir-cellar/beir). Note that all these datasets are in English.
66
+
67
+ | Dataset | NDCG@10 |
68
+ |:------------------|--------:|
69
+ | Average | 0.438 |
70
+ | | |
71
+ | Arguana | 0.524 |
72
+ | CLIMATE-FEVER | 0.150 |
73
+ | DBPedia Entity | 0.338 |
74
+ | FEVER | 0.706 |
75
+ | FiQA-2018 | 0.269 |
76
+ | HotpotQA | 0.630 |
77
+ | MS MARCO | 0.328 |
78
+ | NFCorpus | 0.340 |
79
+ | NQ | 0.429 |
80
+ | Quora | 0.722 |
81
+ | SCIDOCS | 0.141 |
82
+ | SciFact | 0.627 |
83
+ | TREC-COVID | 0.628 |
84
+ | Webis-Touche-2020 | 0.306 |