Upload 4 files
Browse files- README.md +49 -0
- config.json +25 -0
- pytorch_model.bin +3 -0
- tokenizer.json +0 -0
README.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Model Card for answer-finder-v1-S-en
|
2 |
+
|
3 |
+
This model is a question answering model developed by Sinequa. It produces two lists of logit scores corresponding to
|
4 |
+
the start token and end token of an answer.
|
5 |
+
|
6 |
+
Model name: `answer-finder-v1-S-en`
|
7 |
+
|
8 |
+
## Supported Languages
|
9 |
+
|
10 |
+
The model was trained and tested in the following languages:
|
11 |
+
|
12 |
+
- English
|
13 |
+
|
14 |
+
## Scores
|
15 |
+
|
16 |
+
| Metric | Value |
|
17 |
+
|:--------------------------------------------------------------|-------:|
|
18 |
+
| F1 Score on SQuAD v2 with Hugging Face evaluation pipeline | 79.4 |
|
19 |
+
| F1 Score on SQuAD v2 with Haystack evaluation pipeline | 79.5 |
|
20 |
+
|
21 |
+
## Inference Time
|
22 |
+
|
23 |
+
| GPU Info | Batch size 1 | Batch size 32 |
|
24 |
+
|:--------------------------------------------------------------|---------------:|---------------:|
|
25 |
+
| NVIDIA A10 | 4 ms | 44 ms |
|
26 |
+
| NVIDIA T4 | 7 ms | 128 ms |
|
27 |
+
|
28 |
+
**Note that the Answer Finder models are only used at query time.**
|
29 |
+
|
30 |
+
## Requirements
|
31 |
+
|
32 |
+
- Minimal Sinequa version: 11.10.0
|
33 |
+
- GPU memory usage: 560 MiB MiB
|
34 |
+
|
35 |
+
Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
|
36 |
+
size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
|
37 |
+
can be around 0.5 to 1 GiB depending on the used GPU.
|
38 |
+
|
39 |
+
## Model Details
|
40 |
+
|
41 |
+
### Overview
|
42 |
+
|
43 |
+
- Number of parameters: 33 million
|
44 |
+
- Base language model: [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased)
|
45 |
+
- Insensitive to casing and accents
|
46 |
+
|
47 |
+
### Training Data
|
48 |
+
|
49 |
+
- [SQuAD v2](https://rajpurkar.github.io/SQuAD-explorer/)
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/MiniLM-L12-H384-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"BertForQuestionAnswering"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 1536,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 12,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.21.0",
|
22 |
+
"type_vocab_size": 2,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 30522
|
25 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:032549a995ab07113f632f4413032ea129aeda7029f3e549ca3585b1e0bca786
|
3 |
+
size 132919345
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|