Create model.py
Browse files
model.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
6 |
+
import os
|
7 |
+
|
8 |
+
# 超参数
|
9 |
+
batch_size = 64 # 一批包含的文本序列个数
|
10 |
+
block_size = 256 # 一个文本序列包含的字符个数
|
11 |
+
n_embed = 384 # embedding维度
|
12 |
+
n_head = 6
|
13 |
+
n_layer = 6
|
14 |
+
dropout = 0.2
|
15 |
+
|
16 |
+
# 准备词汇表
|
17 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
18 |
+
with open(os.path.join(current_dir, 'input.txt'), 'r', encoding='utf-8') as f:
|
19 |
+
text = f.read()
|
20 |
+
|
21 |
+
chars = sorted(list(set(text)))
|
22 |
+
vocab_size = len(chars)
|
23 |
+
|
24 |
+
# decode、encode函数,在序号和字符间转换
|
25 |
+
stoi = { ch:i for i,ch in enumerate(chars) }
|
26 |
+
itos = { i:ch for i,ch in enumerate(chars) }
|
27 |
+
encode = lambda s: [stoi[c] for c in s]
|
28 |
+
decode = lambda l: ''.join([itos[i] for i in l])
|
29 |
+
|
30 |
+
class NoobConfig(PretrainedConfig):
|
31 |
+
model_type = "Noob"
|
32 |
+
vocab_size = vocab_size
|
33 |
+
n_positions = block_size
|
34 |
+
n_embd = n_embed
|
35 |
+
n_layer = n_layer
|
36 |
+
n_head = n_head
|
37 |
+
|
38 |
+
class Head(nn.Module):
|
39 |
+
""" one head of self-attention """
|
40 |
+
def __init__(self, head_size):
|
41 |
+
super().__init__()
|
42 |
+
self.key = nn.Linear(n_embed, head_size, bias=False)
|
43 |
+
self.query = nn.Linear(n_embed, head_size, bias=False)
|
44 |
+
self.value = nn.Linear(n_embed, head_size, bias=False)
|
45 |
+
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
|
46 |
+
self.dropout = nn.Dropout(dropout)
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
B, T, C = x.shape
|
50 |
+
k = self.key(x)
|
51 |
+
q = self.query(x)
|
52 |
+
wei = q @ k.transpose(-2, -1) * C**-0.5
|
53 |
+
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
|
54 |
+
wei = F.softmax(wei, dim=-1)
|
55 |
+
wei = self.dropout(wei)
|
56 |
+
v = self.value(x)
|
57 |
+
out = wei @ v
|
58 |
+
return out
|
59 |
+
|
60 |
+
class MultiHeadAttention(nn.Module):
|
61 |
+
def __init__(self, num_heads, head_size):
|
62 |
+
super().__init__()
|
63 |
+
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
|
64 |
+
self.proj = nn.Linear(n_embed, n_embed)
|
65 |
+
self.dropout = nn.Dropout(dropout)
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
out = torch.cat([h(x) for h in self.heads], dim=-1)
|
69 |
+
out = self.proj(out)
|
70 |
+
out = self.dropout(out)
|
71 |
+
return out
|
72 |
+
|
73 |
+
class FeedFoward(nn.Module):
|
74 |
+
def __init__(self, n_embed):
|
75 |
+
super().__init__()
|
76 |
+
self.net = nn.Sequential(
|
77 |
+
nn.Linear(n_embed, 4 * n_embed),
|
78 |
+
nn.ReLU(),
|
79 |
+
nn.Linear(4 * n_embed, n_embed),
|
80 |
+
nn.Dropout(dropout),
|
81 |
+
)
|
82 |
+
|
83 |
+
def forward(self, x):
|
84 |
+
return self.net(x)
|
85 |
+
|
86 |
+
class Block(nn.Module):
|
87 |
+
""" transformer block: communication followed by computation """
|
88 |
+
def __init__(self, n_embed, n_head):
|
89 |
+
super().__init__()
|
90 |
+
head_size = n_embed // n_head
|
91 |
+
self.sa = MultiHeadAttention(n_head, head_size)
|
92 |
+
self.ffwd = FeedFoward(n_embed)
|
93 |
+
self.ln1 = nn.LayerNorm(n_embed)
|
94 |
+
self.ln2 = nn.LayerNorm(n_embed)
|
95 |
+
|
96 |
+
def forward(self, x):
|
97 |
+
x = x + self.sa(self.ln1(x))
|
98 |
+
x = x + self.ffwd(self.ln2(x))
|
99 |
+
return x
|
100 |
+
|
101 |
+
class Noob(PreTrainedModel):
|
102 |
+
config_class = NoobConfig
|
103 |
+
|
104 |
+
def __init__(self, config):
|
105 |
+
super().__init__(config)
|
106 |
+
self.token_embedding_table = nn.Embedding(config.vocab_size, config.n_embd)
|
107 |
+
self.position_embedding_table = nn.Embedding(config.n_positions, config.n_embd)
|
108 |
+
self.blocks = nn.Sequential(*[Block(config.n_embd, config.n_head) for _ in range(config.n_layer)])
|
109 |
+
self.ln_final = nn.LayerNorm(config.n_embd)
|
110 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
|
111 |
+
|
112 |
+
def forward(self, idx, targets=None):
|
113 |
+
B, T = idx.shape
|
114 |
+
tok_emb = self.token_embedding_table(idx)
|
115 |
+
pos_emb = self.position_embedding_table(torch.arange(T, device=idx.device))
|
116 |
+
x = tok_emb + pos_emb
|
117 |
+
x = self.blocks(x)
|
118 |
+
x = self.ln_final(x)
|
119 |
+
logits = self.lm_head(x)
|
120 |
+
|
121 |
+
if targets is None:
|
122 |
+
loss = None
|
123 |
+
else:
|
124 |
+
B, T, C = logits.shape
|
125 |
+
logits = logits.view(B*T, C)
|
126 |
+
targets = targets.view(B*T)
|
127 |
+
loss = F.cross_entropy(logits, targets)
|
128 |
+
|
129 |
+
return logits, loss
|
130 |
+
|
131 |
+
def generate(self, idx, max_new_tokens):
|
132 |
+
for _ in range(max_new_tokens):
|
133 |
+
idx_cond = idx[:, -block_size:]
|
134 |
+
logits, _ = self(idx_cond)
|
135 |
+
logits = logits[:, -1, :]
|
136 |
+
probs = F.softmax(logits, dim=-1)
|
137 |
+
idx_next = torch.multinomial(probs, num_samples=1)
|
138 |
+
idx = torch.cat((idx, idx_next), dim=1)
|
139 |
+
return idx
|
140 |
+
|
141 |
+
def save_pretrained(self, save_directory, **kwargs):
|
142 |
+
super().save_pretrained(save_directory, **kwargs)
|
143 |
+
with open(f"{save_directory}/vocab.json", "w") as f:
|
144 |
+
json.dump(stoi, f)
|