|
from transformers import PreTrainedTokenizer |
|
from typing import List, Optional |
|
import os |
|
import json |
|
import argparse |
|
|
|
class NoobTokenizer(PreTrainedTokenizer): |
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
def __init__(self, vocab_file=None, **kwargs): |
|
if vocab_file is None: |
|
|
|
with open('input.txt', 'r', encoding='utf-8') as f: |
|
text = f.read() |
|
chars = sorted(list(set(text))) |
|
self.stoi = {ch: i for i, ch in enumerate(chars)} |
|
self.itos = {i: ch for i, ch in enumerate(chars)} |
|
else: |
|
|
|
with open(vocab_file, 'r', encoding='utf-8') as f: |
|
self.stoi = json.load(f) |
|
self.itos = {int(i): ch for ch, i in self.stoi.items()} |
|
super().__init__(**kwargs) |
|
|
|
@property |
|
def vocab_size(self) -> int: |
|
return len(self.stoi) |
|
|
|
def get_vocab(self): |
|
return dict(self.stoi) |
|
|
|
def _tokenize(self, text: str) -> List[str]: |
|
return list(text) |
|
|
|
def _convert_token_to_id(self, token: str) -> int: |
|
return self.stoi.get(token, 0) |
|
|
|
def _convert_id_to_token(self, index: int) -> str: |
|
return self.itos[index] |
|
|
|
def convert_tokens_to_string(self, tokens: List[str]) -> str: |
|
return "".join(tokens) |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> tuple: |
|
vocab_file = os.path.join(save_directory, 'vocab.json') |
|
|
|
with open(vocab_file, 'w', encoding='utf-8') as f: |
|
json.dump(self.stoi, f, ensure_ascii=False) |
|
|
|
return (vocab_file,) |