simonycl commited on
Commit
ef9147d
1 Parent(s): a5f4baf

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +157 -157
README.md CHANGED
@@ -1,24 +1,24 @@
1
  ---
2
- license: apache-2.0
3
- base_model: bert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
  metrics:
7
  - accuracy
8
  model-index:
9
- - name: bert-base-uncased-sst-2-16-21
10
  results: []
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
  should probably proofread and complete it, then remove this comment. -->
15
 
16
- # bert-base-uncased-sst-2-16-21
17
 
18
- This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.5327
21
- - Accuracy: 0.6562
22
 
23
  ## Model description
24
 
@@ -50,156 +50,156 @@ The following hyperparameters were used during training:
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
- | No log | 1.0 | 1 | 0.6100 | 0.5938 |
54
- | No log | 2.0 | 2 | 0.6101 | 0.5938 |
55
- | No log | 3.0 | 3 | 0.6101 | 0.5938 |
56
- | No log | 4.0 | 4 | 0.6101 | 0.5938 |
57
- | No log | 5.0 | 5 | 0.6100 | 0.5938 |
58
- | No log | 6.0 | 6 | 0.6099 | 0.5938 |
59
- | No log | 7.0 | 7 | 0.6099 | 0.5938 |
60
- | No log | 8.0 | 8 | 0.6099 | 0.5938 |
61
- | No log | 9.0 | 9 | 0.6097 | 0.5938 |
62
- | 0.6585 | 10.0 | 10 | 0.6097 | 0.5938 |
63
- | 0.6585 | 11.0 | 11 | 0.6095 | 0.5938 |
64
- | 0.6585 | 12.0 | 12 | 0.6094 | 0.5938 |
65
- | 0.6585 | 13.0 | 13 | 0.6093 | 0.5938 |
66
- | 0.6585 | 14.0 | 14 | 0.6092 | 0.5938 |
67
- | 0.6585 | 15.0 | 15 | 0.6088 | 0.5938 |
68
- | 0.6585 | 16.0 | 16 | 0.6086 | 0.5938 |
69
- | 0.6585 | 17.0 | 17 | 0.6083 | 0.5938 |
70
- | 0.6585 | 18.0 | 18 | 0.6078 | 0.5938 |
71
- | 0.6585 | 19.0 | 19 | 0.6074 | 0.625 |
72
- | 0.6577 | 20.0 | 20 | 0.6070 | 0.625 |
73
- | 0.6577 | 21.0 | 21 | 0.6064 | 0.625 |
74
- | 0.6577 | 22.0 | 22 | 0.6058 | 0.625 |
75
- | 0.6577 | 23.0 | 23 | 0.6051 | 0.625 |
76
- | 0.6577 | 24.0 | 24 | 0.6044 | 0.625 |
77
- | 0.6577 | 25.0 | 25 | 0.6038 | 0.625 |
78
- | 0.6577 | 26.0 | 26 | 0.6035 | 0.625 |
79
- | 0.6577 | 27.0 | 27 | 0.6033 | 0.625 |
80
- | 0.6577 | 28.0 | 28 | 0.6033 | 0.625 |
81
- | 0.6577 | 29.0 | 29 | 0.6030 | 0.625 |
82
- | 0.6396 | 30.0 | 30 | 0.6028 | 0.625 |
83
- | 0.6396 | 31.0 | 31 | 0.6025 | 0.625 |
84
- | 0.6396 | 32.0 | 32 | 0.6021 | 0.625 |
85
- | 0.6396 | 33.0 | 33 | 0.6019 | 0.625 |
86
- | 0.6396 | 34.0 | 34 | 0.6016 | 0.625 |
87
- | 0.6396 | 35.0 | 35 | 0.6015 | 0.625 |
88
- | 0.6396 | 36.0 | 36 | 0.6014 | 0.5938 |
89
- | 0.6396 | 37.0 | 37 | 0.6013 | 0.5938 |
90
- | 0.6396 | 38.0 | 38 | 0.6010 | 0.5938 |
91
- | 0.6396 | 39.0 | 39 | 0.6008 | 0.5938 |
92
- | 0.5911 | 40.0 | 40 | 0.6006 | 0.5938 |
93
- | 0.5911 | 41.0 | 41 | 0.6002 | 0.5938 |
94
- | 0.5911 | 42.0 | 42 | 0.5998 | 0.5938 |
95
- | 0.5911 | 43.0 | 43 | 0.5992 | 0.5938 |
96
- | 0.5911 | 44.0 | 44 | 0.5985 | 0.625 |
97
- | 0.5911 | 45.0 | 45 | 0.5980 | 0.625 |
98
- | 0.5911 | 46.0 | 46 | 0.5976 | 0.625 |
99
- | 0.5911 | 47.0 | 47 | 0.5974 | 0.625 |
100
- | 0.5911 | 48.0 | 48 | 0.5975 | 0.625 |
101
- | 0.5911 | 49.0 | 49 | 0.5977 | 0.625 |
102
- | 0.5576 | 50.0 | 50 | 0.5980 | 0.625 |
103
- | 0.5576 | 51.0 | 51 | 0.5984 | 0.625 |
104
- | 0.5576 | 52.0 | 52 | 0.5990 | 0.625 |
105
- | 0.5576 | 53.0 | 53 | 0.5992 | 0.625 |
106
- | 0.5576 | 54.0 | 54 | 0.5995 | 0.625 |
107
- | 0.5576 | 55.0 | 55 | 0.5999 | 0.5938 |
108
- | 0.5576 | 56.0 | 56 | 0.6003 | 0.5938 |
109
- | 0.5576 | 57.0 | 57 | 0.6008 | 0.5938 |
110
- | 0.5576 | 58.0 | 58 | 0.6012 | 0.5938 |
111
- | 0.5576 | 59.0 | 59 | 0.6015 | 0.5938 |
112
- | 0.499 | 60.0 | 60 | 0.6017 | 0.5938 |
113
- | 0.499 | 61.0 | 61 | 0.6018 | 0.5938 |
114
- | 0.499 | 62.0 | 62 | 0.6016 | 0.5938 |
115
- | 0.499 | 63.0 | 63 | 0.6017 | 0.5938 |
116
- | 0.499 | 64.0 | 64 | 0.6019 | 0.5938 |
117
- | 0.499 | 65.0 | 65 | 0.6018 | 0.5938 |
118
- | 0.499 | 66.0 | 66 | 0.6016 | 0.625 |
119
- | 0.499 | 67.0 | 67 | 0.6012 | 0.625 |
120
- | 0.499 | 68.0 | 68 | 0.6005 | 0.625 |
121
- | 0.499 | 69.0 | 69 | 0.5996 | 0.625 |
122
- | 0.4607 | 70.0 | 70 | 0.5988 | 0.625 |
123
- | 0.4607 | 71.0 | 71 | 0.5978 | 0.5938 |
124
- | 0.4607 | 72.0 | 72 | 0.5969 | 0.5938 |
125
- | 0.4607 | 73.0 | 73 | 0.5960 | 0.5938 |
126
- | 0.4607 | 74.0 | 74 | 0.5952 | 0.5938 |
127
- | 0.4607 | 75.0 | 75 | 0.5943 | 0.625 |
128
- | 0.4607 | 76.0 | 76 | 0.5932 | 0.625 |
129
- | 0.4607 | 77.0 | 77 | 0.5923 | 0.625 |
130
- | 0.4607 | 78.0 | 78 | 0.5911 | 0.625 |
131
- | 0.4607 | 79.0 | 79 | 0.5900 | 0.625 |
132
- | 0.4053 | 80.0 | 80 | 0.5890 | 0.625 |
133
- | 0.4053 | 81.0 | 81 | 0.5881 | 0.625 |
134
- | 0.4053 | 82.0 | 82 | 0.5875 | 0.625 |
135
- | 0.4053 | 83.0 | 83 | 0.5870 | 0.625 |
136
- | 0.4053 | 84.0 | 84 | 0.5864 | 0.625 |
137
- | 0.4053 | 85.0 | 85 | 0.5859 | 0.6562 |
138
- | 0.4053 | 86.0 | 86 | 0.5854 | 0.625 |
139
- | 0.4053 | 87.0 | 87 | 0.5850 | 0.625 |
140
- | 0.4053 | 88.0 | 88 | 0.5847 | 0.625 |
141
- | 0.4053 | 89.0 | 89 | 0.5845 | 0.625 |
142
- | 0.3526 | 90.0 | 90 | 0.5844 | 0.6562 |
143
- | 0.3526 | 91.0 | 91 | 0.5843 | 0.6562 |
144
- | 0.3526 | 92.0 | 92 | 0.5844 | 0.625 |
145
- | 0.3526 | 93.0 | 93 | 0.5842 | 0.625 |
146
- | 0.3526 | 94.0 | 94 | 0.5839 | 0.625 |
147
- | 0.3526 | 95.0 | 95 | 0.5835 | 0.625 |
148
- | 0.3526 | 96.0 | 96 | 0.5829 | 0.625 |
149
- | 0.3526 | 97.0 | 97 | 0.5824 | 0.6562 |
150
- | 0.3526 | 98.0 | 98 | 0.5820 | 0.625 |
151
- | 0.3526 | 99.0 | 99 | 0.5817 | 0.625 |
152
- | 0.3275 | 100.0 | 100 | 0.5817 | 0.625 |
153
- | 0.3275 | 101.0 | 101 | 0.5818 | 0.5938 |
154
- | 0.3275 | 102.0 | 102 | 0.5817 | 0.5938 |
155
- | 0.3275 | 103.0 | 103 | 0.5813 | 0.5938 |
156
- | 0.3275 | 104.0 | 104 | 0.5806 | 0.5938 |
157
- | 0.3275 | 105.0 | 105 | 0.5794 | 0.5938 |
158
- | 0.3275 | 106.0 | 106 | 0.5779 | 0.5938 |
159
- | 0.3275 | 107.0 | 107 | 0.5765 | 0.625 |
160
- | 0.3275 | 108.0 | 108 | 0.5749 | 0.625 |
161
- | 0.3275 | 109.0 | 109 | 0.5733 | 0.625 |
162
- | 0.3001 | 110.0 | 110 | 0.5720 | 0.625 |
163
- | 0.3001 | 111.0 | 111 | 0.5705 | 0.625 |
164
- | 0.3001 | 112.0 | 112 | 0.5691 | 0.625 |
165
- | 0.3001 | 113.0 | 113 | 0.5676 | 0.6562 |
166
- | 0.3001 | 114.0 | 114 | 0.5660 | 0.6562 |
167
- | 0.3001 | 115.0 | 115 | 0.5645 | 0.6875 |
168
- | 0.3001 | 116.0 | 116 | 0.5631 | 0.6875 |
169
- | 0.3001 | 117.0 | 117 | 0.5618 | 0.6562 |
170
- | 0.3001 | 118.0 | 118 | 0.5606 | 0.6562 |
171
- | 0.3001 | 119.0 | 119 | 0.5593 | 0.6562 |
172
- | 0.2668 | 120.0 | 120 | 0.5584 | 0.6562 |
173
- | 0.2668 | 121.0 | 121 | 0.5576 | 0.625 |
174
- | 0.2668 | 122.0 | 122 | 0.5571 | 0.625 |
175
- | 0.2668 | 123.0 | 123 | 0.5566 | 0.6562 |
176
- | 0.2668 | 124.0 | 124 | 0.5560 | 0.6562 |
177
- | 0.2668 | 125.0 | 125 | 0.5555 | 0.6562 |
178
- | 0.2668 | 126.0 | 126 | 0.5549 | 0.6562 |
179
- | 0.2668 | 127.0 | 127 | 0.5542 | 0.6562 |
180
- | 0.2668 | 128.0 | 128 | 0.5531 | 0.6562 |
181
- | 0.2668 | 129.0 | 129 | 0.5513 | 0.6562 |
182
- | 0.2363 | 130.0 | 130 | 0.5495 | 0.6562 |
183
- | 0.2363 | 131.0 | 131 | 0.5478 | 0.6562 |
184
- | 0.2363 | 132.0 | 132 | 0.5461 | 0.6562 |
185
- | 0.2363 | 133.0 | 133 | 0.5444 | 0.6875 |
186
- | 0.2363 | 134.0 | 134 | 0.5430 | 0.6875 |
187
- | 0.2363 | 135.0 | 135 | 0.5418 | 0.6875 |
188
- | 0.2363 | 136.0 | 136 | 0.5409 | 0.6875 |
189
- | 0.2363 | 137.0 | 137 | 0.5399 | 0.6875 |
190
- | 0.2363 | 138.0 | 138 | 0.5390 | 0.6875 |
191
- | 0.2363 | 139.0 | 139 | 0.5380 | 0.6875 |
192
- | 0.1905 | 140.0 | 140 | 0.5376 | 0.6875 |
193
- | 0.1905 | 141.0 | 141 | 0.5372 | 0.6875 |
194
- | 0.1905 | 142.0 | 142 | 0.5367 | 0.6875 |
195
- | 0.1905 | 143.0 | 143 | 0.5362 | 0.6875 |
196
- | 0.1905 | 144.0 | 144 | 0.5357 | 0.6875 |
197
- | 0.1905 | 145.0 | 145 | 0.5354 | 0.6875 |
198
- | 0.1905 | 146.0 | 146 | 0.5350 | 0.6562 |
199
- | 0.1905 | 147.0 | 147 | 0.5346 | 0.6562 |
200
- | 0.1905 | 148.0 | 148 | 0.5340 | 0.6562 |
201
- | 0.1905 | 149.0 | 149 | 0.5333 | 0.6562 |
202
- | 0.1614 | 150.0 | 150 | 0.5327 | 0.6562 |
203
 
204
 
205
  ### Framework versions
 
1
  ---
2
+ license: mit
3
+ base_model: roberta-large
4
  tags:
5
  - generated_from_trainer
6
  metrics:
7
  - accuracy
8
  model-index:
9
+ - name: roberta-large-sst-2-16-13
10
  results: []
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
  should probably proofread and complete it, then remove this comment. -->
15
 
16
+ # roberta-large-sst-2-16-13
17
 
18
+ This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.3222
21
+ - Accuracy: 0.8438
22
 
23
  ## Model description
24
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
+ | No log | 1.0 | 1 | 0.7045 | 0.5 |
54
+ | No log | 2.0 | 2 | 0.7045 | 0.5 |
55
+ | No log | 3.0 | 3 | 0.7045 | 0.5 |
56
+ | No log | 4.0 | 4 | 0.7045 | 0.5 |
57
+ | No log | 5.0 | 5 | 0.7045 | 0.5 |
58
+ | No log | 6.0 | 6 | 0.7045 | 0.5 |
59
+ | No log | 7.0 | 7 | 0.7044 | 0.5 |
60
+ | No log | 8.0 | 8 | 0.7044 | 0.5 |
61
+ | No log | 9.0 | 9 | 0.7044 | 0.5 |
62
+ | 0.7125 | 10.0 | 10 | 0.7043 | 0.5 |
63
+ | 0.7125 | 11.0 | 11 | 0.7043 | 0.5 |
64
+ | 0.7125 | 12.0 | 12 | 0.7042 | 0.5 |
65
+ | 0.7125 | 13.0 | 13 | 0.7042 | 0.5 |
66
+ | 0.7125 | 14.0 | 14 | 0.7041 | 0.5 |
67
+ | 0.7125 | 15.0 | 15 | 0.7041 | 0.5 |
68
+ | 0.7125 | 16.0 | 16 | 0.7040 | 0.5 |
69
+ | 0.7125 | 17.0 | 17 | 0.7040 | 0.5 |
70
+ | 0.7125 | 18.0 | 18 | 0.7039 | 0.5 |
71
+ | 0.7125 | 19.0 | 19 | 0.7039 | 0.5 |
72
+ | 0.6935 | 20.0 | 20 | 0.7038 | 0.5 |
73
+ | 0.6935 | 21.0 | 21 | 0.7038 | 0.5 |
74
+ | 0.6935 | 22.0 | 22 | 0.7037 | 0.5 |
75
+ | 0.6935 | 23.0 | 23 | 0.7037 | 0.5 |
76
+ | 0.6935 | 24.0 | 24 | 0.7037 | 0.5 |
77
+ | 0.6935 | 25.0 | 25 | 0.7036 | 0.5 |
78
+ | 0.6935 | 26.0 | 26 | 0.7036 | 0.5 |
79
+ | 0.6935 | 27.0 | 27 | 0.7035 | 0.5 |
80
+ | 0.6935 | 28.0 | 28 | 0.7035 | 0.5 |
81
+ | 0.6935 | 29.0 | 29 | 0.7034 | 0.5 |
82
+ | 0.7031 | 30.0 | 30 | 0.7033 | 0.5 |
83
+ | 0.7031 | 31.0 | 31 | 0.7032 | 0.5 |
84
+ | 0.7031 | 32.0 | 32 | 0.7031 | 0.5 |
85
+ | 0.7031 | 33.0 | 33 | 0.7030 | 0.5 |
86
+ | 0.7031 | 34.0 | 34 | 0.7029 | 0.5 |
87
+ | 0.7031 | 35.0 | 35 | 0.7027 | 0.5 |
88
+ | 0.7031 | 36.0 | 36 | 0.7027 | 0.5 |
89
+ | 0.7031 | 37.0 | 37 | 0.7026 | 0.5 |
90
+ | 0.7031 | 38.0 | 38 | 0.7025 | 0.5 |
91
+ | 0.7031 | 39.0 | 39 | 0.7024 | 0.5 |
92
+ | 0.7021 | 40.0 | 40 | 0.7023 | 0.5 |
93
+ | 0.7021 | 41.0 | 41 | 0.7022 | 0.5 |
94
+ | 0.7021 | 42.0 | 42 | 0.7021 | 0.5 |
95
+ | 0.7021 | 43.0 | 43 | 0.7019 | 0.5 |
96
+ | 0.7021 | 44.0 | 44 | 0.7017 | 0.5 |
97
+ | 0.7021 | 45.0 | 45 | 0.7016 | 0.5 |
98
+ | 0.7021 | 46.0 | 46 | 0.7014 | 0.5 |
99
+ | 0.7021 | 47.0 | 47 | 0.7012 | 0.5 |
100
+ | 0.7021 | 48.0 | 48 | 0.7010 | 0.5 |
101
+ | 0.7021 | 49.0 | 49 | 0.7007 | 0.5 |
102
+ | 0.7009 | 50.0 | 50 | 0.7005 | 0.5 |
103
+ | 0.7009 | 51.0 | 51 | 0.7003 | 0.5 |
104
+ | 0.7009 | 52.0 | 52 | 0.7001 | 0.5 |
105
+ | 0.7009 | 53.0 | 53 | 0.6998 | 0.5 |
106
+ | 0.7009 | 54.0 | 54 | 0.6996 | 0.5 |
107
+ | 0.7009 | 55.0 | 55 | 0.6994 | 0.5 |
108
+ | 0.7009 | 56.0 | 56 | 0.6993 | 0.5 |
109
+ | 0.7009 | 57.0 | 57 | 0.6992 | 0.5 |
110
+ | 0.7009 | 58.0 | 58 | 0.6990 | 0.5 |
111
+ | 0.7009 | 59.0 | 59 | 0.6988 | 0.5 |
112
+ | 0.6866 | 60.0 | 60 | 0.6986 | 0.5 |
113
+ | 0.6866 | 61.0 | 61 | 0.6984 | 0.5 |
114
+ | 0.6866 | 62.0 | 62 | 0.6983 | 0.5 |
115
+ | 0.6866 | 63.0 | 63 | 0.6981 | 0.5 |
116
+ | 0.6866 | 64.0 | 64 | 0.6979 | 0.5 |
117
+ | 0.6866 | 65.0 | 65 | 0.6977 | 0.5 |
118
+ | 0.6866 | 66.0 | 66 | 0.6976 | 0.4688 |
119
+ | 0.6866 | 67.0 | 67 | 0.6974 | 0.4688 |
120
+ | 0.6866 | 68.0 | 68 | 0.6972 | 0.4688 |
121
+ | 0.6866 | 69.0 | 69 | 0.6970 | 0.4688 |
122
+ | 0.6818 | 70.0 | 70 | 0.6968 | 0.4688 |
123
+ | 0.6818 | 71.0 | 71 | 0.6966 | 0.4688 |
124
+ | 0.6818 | 72.0 | 72 | 0.6964 | 0.4688 |
125
+ | 0.6818 | 73.0 | 73 | 0.6961 | 0.4688 |
126
+ | 0.6818 | 74.0 | 74 | 0.6960 | 0.4688 |
127
+ | 0.6818 | 75.0 | 75 | 0.6959 | 0.4688 |
128
+ | 0.6818 | 76.0 | 76 | 0.6957 | 0.4688 |
129
+ | 0.6818 | 77.0 | 77 | 0.6955 | 0.4688 |
130
+ | 0.6818 | 78.0 | 78 | 0.6953 | 0.4688 |
131
+ | 0.6818 | 79.0 | 79 | 0.6948 | 0.4688 |
132
+ | 0.6639 | 80.0 | 80 | 0.6940 | 0.4688 |
133
+ | 0.6639 | 81.0 | 81 | 0.6932 | 0.4688 |
134
+ | 0.6639 | 82.0 | 82 | 0.6925 | 0.4688 |
135
+ | 0.6639 | 83.0 | 83 | 0.6916 | 0.4688 |
136
+ | 0.6639 | 84.0 | 84 | 0.6908 | 0.5 |
137
+ | 0.6639 | 85.0 | 85 | 0.6899 | 0.5 |
138
+ | 0.6639 | 86.0 | 86 | 0.6889 | 0.5 |
139
+ | 0.6639 | 87.0 | 87 | 0.6878 | 0.5 |
140
+ | 0.6639 | 88.0 | 88 | 0.6869 | 0.5 |
141
+ | 0.6639 | 89.0 | 89 | 0.6859 | 0.4688 |
142
+ | 0.6652 | 90.0 | 90 | 0.6850 | 0.4688 |
143
+ | 0.6652 | 91.0 | 91 | 0.6842 | 0.4688 |
144
+ | 0.6652 | 92.0 | 92 | 0.6836 | 0.5312 |
145
+ | 0.6652 | 93.0 | 93 | 0.6829 | 0.5312 |
146
+ | 0.6652 | 94.0 | 94 | 0.6818 | 0.5625 |
147
+ | 0.6652 | 95.0 | 95 | 0.6806 | 0.5938 |
148
+ | 0.6652 | 96.0 | 96 | 0.6792 | 0.5938 |
149
+ | 0.6652 | 97.0 | 97 | 0.6783 | 0.5938 |
150
+ | 0.6652 | 98.0 | 98 | 0.6771 | 0.5938 |
151
+ | 0.6652 | 99.0 | 99 | 0.6758 | 0.5938 |
152
+ | 0.621 | 100.0 | 100 | 0.6743 | 0.5938 |
153
+ | 0.621 | 101.0 | 101 | 0.6725 | 0.5938 |
154
+ | 0.621 | 102.0 | 102 | 0.6711 | 0.5938 |
155
+ | 0.621 | 103.0 | 103 | 0.6708 | 0.5938 |
156
+ | 0.621 | 104.0 | 104 | 0.6713 | 0.625 |
157
+ | 0.621 | 105.0 | 105 | 0.6693 | 0.5938 |
158
+ | 0.621 | 106.0 | 106 | 0.6605 | 0.5938 |
159
+ | 0.621 | 107.0 | 107 | 0.6499 | 0.5938 |
160
+ | 0.621 | 108.0 | 108 | 0.6439 | 0.5625 |
161
+ | 0.621 | 109.0 | 109 | 0.6434 | 0.625 |
162
+ | 0.5331 | 110.0 | 110 | 0.6439 | 0.5938 |
163
+ | 0.5331 | 111.0 | 111 | 0.6418 | 0.5625 |
164
+ | 0.5331 | 112.0 | 112 | 0.6388 | 0.5625 |
165
+ | 0.5331 | 113.0 | 113 | 0.6346 | 0.5625 |
166
+ | 0.5331 | 114.0 | 114 | 0.6307 | 0.5625 |
167
+ | 0.5331 | 115.0 | 115 | 0.6275 | 0.5625 |
168
+ | 0.5331 | 116.0 | 116 | 0.6230 | 0.5625 |
169
+ | 0.5331 | 117.0 | 117 | 0.6144 | 0.5625 |
170
+ | 0.5331 | 118.0 | 118 | 0.6092 | 0.5625 |
171
+ | 0.5331 | 119.0 | 119 | 0.6042 | 0.5938 |
172
+ | 0.4594 | 120.0 | 120 | 0.6006 | 0.5938 |
173
+ | 0.4594 | 121.0 | 121 | 0.5971 | 0.5938 |
174
+ | 0.4594 | 122.0 | 122 | 0.5906 | 0.5938 |
175
+ | 0.4594 | 123.0 | 123 | 0.5841 | 0.5938 |
176
+ | 0.4594 | 124.0 | 124 | 0.5759 | 0.6562 |
177
+ | 0.4594 | 125.0 | 125 | 0.5682 | 0.6875 |
178
+ | 0.4594 | 126.0 | 126 | 0.5566 | 0.6875 |
179
+ | 0.4594 | 127.0 | 127 | 0.5431 | 0.6875 |
180
+ | 0.4594 | 128.0 | 128 | 0.5314 | 0.6875 |
181
+ | 0.4594 | 129.0 | 129 | 0.5221 | 0.7188 |
182
+ | 0.33 | 130.0 | 130 | 0.5145 | 0.7188 |
183
+ | 0.33 | 131.0 | 131 | 0.5062 | 0.7188 |
184
+ | 0.33 | 132.0 | 132 | 0.4988 | 0.7188 |
185
+ | 0.33 | 133.0 | 133 | 0.4888 | 0.7188 |
186
+ | 0.33 | 134.0 | 134 | 0.4689 | 0.7188 |
187
+ | 0.33 | 135.0 | 135 | 0.4586 | 0.75 |
188
+ | 0.33 | 136.0 | 136 | 0.4464 | 0.7812 |
189
+ | 0.33 | 137.0 | 137 | 0.4330 | 0.7812 |
190
+ | 0.33 | 138.0 | 138 | 0.4185 | 0.7812 |
191
+ | 0.33 | 139.0 | 139 | 0.4004 | 0.8125 |
192
+ | 0.2099 | 140.0 | 140 | 0.3852 | 0.8125 |
193
+ | 0.2099 | 141.0 | 141 | 0.3724 | 0.8125 |
194
+ | 0.2099 | 142.0 | 142 | 0.3610 | 0.8125 |
195
+ | 0.2099 | 143.0 | 143 | 0.3613 | 0.8125 |
196
+ | 0.2099 | 144.0 | 144 | 0.3731 | 0.7812 |
197
+ | 0.2099 | 145.0 | 145 | 0.3655 | 0.8125 |
198
+ | 0.2099 | 146.0 | 146 | 0.3553 | 0.8125 |
199
+ | 0.2099 | 147.0 | 147 | 0.3457 | 0.8125 |
200
+ | 0.2099 | 148.0 | 148 | 0.3380 | 0.8438 |
201
+ | 0.2099 | 149.0 | 149 | 0.3315 | 0.8438 |
202
+ | 0.0894 | 150.0 | 150 | 0.3222 | 0.8438 |
203
 
204
 
205
  ### Framework versions