simonycl commited on
Commit
1d44248
1 Parent(s): 21133b5

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +155 -155
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
- license: mit
3
- base_model: roberta-base
4
  tags:
5
  - generated_from_trainer
6
  metrics:
@@ -15,10 +15,10 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  # best_model-yelp_polarity-32-21
17
 
18
- This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.4088
21
- - Accuracy: 0.9531
22
 
23
  ## Model description
24
 
@@ -50,156 +50,156 @@ The following hyperparameters were used during training:
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
- | No log | 1.0 | 2 | 0.4153 | 0.9531 |
54
- | No log | 2.0 | 4 | 0.4162 | 0.9531 |
55
- | No log | 3.0 | 6 | 0.4170 | 0.9531 |
56
- | No log | 4.0 | 8 | 0.4185 | 0.9531 |
57
- | 0.0656 | 5.0 | 10 | 0.4208 | 0.9531 |
58
- | 0.0656 | 6.0 | 12 | 0.4234 | 0.9531 |
59
- | 0.0656 | 7.0 | 14 | 0.4266 | 0.9531 |
60
- | 0.0656 | 8.0 | 16 | 0.4282 | 0.9531 |
61
- | 0.0656 | 9.0 | 18 | 0.4298 | 0.9531 |
62
- | 0.0228 | 10.0 | 20 | 0.4312 | 0.9531 |
63
- | 0.0228 | 11.0 | 22 | 0.4322 | 0.9531 |
64
- | 0.0228 | 12.0 | 24 | 0.4309 | 0.9531 |
65
- | 0.0228 | 13.0 | 26 | 0.4287 | 0.9531 |
66
- | 0.0228 | 14.0 | 28 | 0.4264 | 0.9531 |
67
- | 0.0275 | 15.0 | 30 | 0.4230 | 0.9531 |
68
- | 0.0275 | 16.0 | 32 | 0.4179 | 0.9531 |
69
- | 0.0275 | 17.0 | 34 | 0.4115 | 0.9531 |
70
- | 0.0275 | 18.0 | 36 | 0.4048 | 0.9531 |
71
- | 0.0275 | 19.0 | 38 | 0.3992 | 0.9531 |
72
- | 0.0051 | 20.0 | 40 | 0.3981 | 0.9531 |
73
- | 0.0051 | 21.0 | 42 | 0.3985 | 0.9531 |
74
- | 0.0051 | 22.0 | 44 | 0.3989 | 0.9531 |
75
- | 0.0051 | 23.0 | 46 | 0.4033 | 0.9531 |
76
- | 0.0051 | 24.0 | 48 | 0.4085 | 0.9531 |
77
- | 0.0002 | 25.0 | 50 | 0.4128 | 0.9531 |
78
- | 0.0002 | 26.0 | 52 | 0.4163 | 0.9531 |
79
- | 0.0002 | 27.0 | 54 | 0.4192 | 0.9531 |
80
- | 0.0002 | 28.0 | 56 | 0.4214 | 0.9531 |
81
- | 0.0002 | 29.0 | 58 | 0.4230 | 0.9531 |
82
- | 0.0001 | 30.0 | 60 | 0.4242 | 0.9531 |
83
- | 0.0001 | 31.0 | 62 | 0.4251 | 0.9531 |
84
- | 0.0001 | 32.0 | 64 | 0.4195 | 0.9531 |
85
- | 0.0001 | 33.0 | 66 | 0.4142 | 0.9531 |
86
- | 0.0001 | 34.0 | 68 | 0.4096 | 0.9531 |
87
- | 0.0002 | 35.0 | 70 | 0.4013 | 0.9531 |
88
- | 0.0002 | 36.0 | 72 | 0.3900 | 0.9531 |
89
- | 0.0002 | 37.0 | 74 | 0.3817 | 0.9531 |
90
- | 0.0002 | 38.0 | 76 | 0.4000 | 0.9375 |
91
- | 0.0002 | 39.0 | 78 | 0.4307 | 0.9375 |
92
- | 0.0001 | 40.0 | 80 | 0.4355 | 0.9375 |
93
- | 0.0001 | 41.0 | 82 | 0.4225 | 0.9375 |
94
- | 0.0001 | 42.0 | 84 | 0.4100 | 0.9375 |
95
- | 0.0001 | 43.0 | 86 | 0.3992 | 0.9375 |
96
- | 0.0001 | 44.0 | 88 | 0.3900 | 0.9375 |
97
- | 0.0 | 45.0 | 90 | 0.3836 | 0.9375 |
98
- | 0.0 | 46.0 | 92 | 0.3797 | 0.9531 |
99
- | 0.0 | 47.0 | 94 | 0.3776 | 0.9531 |
100
- | 0.0 | 48.0 | 96 | 0.3767 | 0.9531 |
101
- | 0.0 | 49.0 | 98 | 0.3763 | 0.9531 |
102
- | 0.0 | 50.0 | 100 | 0.3763 | 0.9531 |
103
- | 0.0 | 51.0 | 102 | 0.3765 | 0.9531 |
104
- | 0.0 | 52.0 | 104 | 0.3768 | 0.9531 |
105
- | 0.0 | 53.0 | 106 | 0.3772 | 0.9531 |
106
- | 0.0 | 54.0 | 108 | 0.3775 | 0.9531 |
107
- | 0.0 | 55.0 | 110 | 0.3778 | 0.9531 |
108
- | 0.0 | 56.0 | 112 | 0.3781 | 0.9531 |
109
- | 0.0 | 57.0 | 114 | 0.3784 | 0.9531 |
110
- | 0.0 | 58.0 | 116 | 0.3787 | 0.9531 |
111
- | 0.0 | 59.0 | 118 | 0.3791 | 0.9531 |
112
- | 0.0 | 60.0 | 120 | 0.3794 | 0.9531 |
113
- | 0.0 | 61.0 | 122 | 0.3798 | 0.9531 |
114
- | 0.0 | 62.0 | 124 | 0.3801 | 0.9531 |
115
- | 0.0 | 63.0 | 126 | 0.3804 | 0.9531 |
116
- | 0.0 | 64.0 | 128 | 0.3809 | 0.9531 |
117
- | 0.0 | 65.0 | 130 | 0.3813 | 0.9531 |
118
- | 0.0 | 66.0 | 132 | 0.3816 | 0.9531 |
119
- | 0.0 | 67.0 | 134 | 0.3820 | 0.9531 |
120
- | 0.0 | 68.0 | 136 | 0.3824 | 0.9531 |
121
- | 0.0 | 69.0 | 138 | 0.3828 | 0.9531 |
122
- | 0.0 | 70.0 | 140 | 0.3831 | 0.9531 |
123
- | 0.0 | 71.0 | 142 | 0.3834 | 0.9531 |
124
- | 0.0 | 72.0 | 144 | 0.3837 | 0.9531 |
125
- | 0.0 | 73.0 | 146 | 0.3841 | 0.9531 |
126
- | 0.0 | 74.0 | 148 | 0.3845 | 0.9531 |
127
- | 0.0 | 75.0 | 150 | 0.3849 | 0.9531 |
128
- | 0.0 | 76.0 | 152 | 0.3852 | 0.9531 |
129
- | 0.0 | 77.0 | 154 | 0.3855 | 0.9531 |
130
- | 0.0 | 78.0 | 156 | 0.3858 | 0.9531 |
131
- | 0.0 | 79.0 | 158 | 0.3860 | 0.9531 |
132
- | 0.0 | 80.0 | 160 | 0.3862 | 0.9531 |
133
- | 0.0 | 81.0 | 162 | 0.3863 | 0.9531 |
134
- | 0.0 | 82.0 | 164 | 0.3865 | 0.9531 |
135
- | 0.0 | 83.0 | 166 | 0.3866 | 0.9531 |
136
- | 0.0 | 84.0 | 168 | 0.3867 | 0.9531 |
137
- | 0.0 | 85.0 | 170 | 0.3865 | 0.9531 |
138
- | 0.0 | 86.0 | 172 | 0.3864 | 0.9531 |
139
- | 0.0 | 87.0 | 174 | 0.3863 | 0.9531 |
140
- | 0.0 | 88.0 | 176 | 0.3863 | 0.9531 |
141
- | 0.0 | 89.0 | 178 | 0.3863 | 0.9531 |
142
- | 0.0 | 90.0 | 180 | 0.3863 | 0.9531 |
143
- | 0.0 | 91.0 | 182 | 0.3864 | 0.9531 |
144
- | 0.0 | 92.0 | 184 | 0.3865 | 0.9531 |
145
- | 0.0 | 93.0 | 186 | 0.3866 | 0.9531 |
146
- | 0.0 | 94.0 | 188 | 0.3870 | 0.9531 |
147
- | 0.0 | 95.0 | 190 | 0.3878 | 0.9531 |
148
- | 0.0 | 96.0 | 192 | 0.3885 | 0.9531 |
149
- | 0.0 | 97.0 | 194 | 0.3891 | 0.9531 |
150
- | 0.0 | 98.0 | 196 | 0.3896 | 0.9531 |
151
- | 0.0 | 99.0 | 198 | 0.3903 | 0.9531 |
152
- | 0.0 | 100.0 | 200 | 0.3910 | 0.9531 |
153
- | 0.0 | 101.0 | 202 | 0.3916 | 0.9531 |
154
- | 0.0 | 102.0 | 204 | 0.3922 | 0.9531 |
155
- | 0.0 | 103.0 | 206 | 0.3928 | 0.9531 |
156
- | 0.0 | 104.0 | 208 | 0.3932 | 0.9531 |
157
- | 0.0 | 105.0 | 210 | 0.3936 | 0.9531 |
158
- | 0.0 | 106.0 | 212 | 0.3940 | 0.9531 |
159
- | 0.0 | 107.0 | 214 | 0.3943 | 0.9531 |
160
- | 0.0 | 108.0 | 216 | 0.3946 | 0.9531 |
161
- | 0.0 | 109.0 | 218 | 0.3949 | 0.9531 |
162
- | 0.0 | 110.0 | 220 | 0.3951 | 0.9531 |
163
- | 0.0 | 111.0 | 222 | 0.3953 | 0.9531 |
164
- | 0.0 | 112.0 | 224 | 0.3954 | 0.9531 |
165
- | 0.0 | 113.0 | 226 | 0.3956 | 0.9531 |
166
- | 0.0 | 114.0 | 228 | 0.3958 | 0.9531 |
167
- | 0.0 | 115.0 | 230 | 0.3962 | 0.9531 |
168
- | 0.0 | 116.0 | 232 | 0.3969 | 0.9531 |
169
- | 0.0 | 117.0 | 234 | 0.3976 | 0.9531 |
170
- | 0.0 | 118.0 | 236 | 0.3981 | 0.9531 |
171
- | 0.0 | 119.0 | 238 | 0.3987 | 0.9531 |
172
- | 0.0 | 120.0 | 240 | 0.3992 | 0.9531 |
173
- | 0.0 | 121.0 | 242 | 0.3996 | 0.9531 |
174
- | 0.0 | 122.0 | 244 | 0.3999 | 0.9531 |
175
- | 0.0 | 123.0 | 246 | 0.4002 | 0.9531 |
176
- | 0.0 | 124.0 | 248 | 0.4005 | 0.9531 |
177
- | 0.0 | 125.0 | 250 | 0.4009 | 0.9531 |
178
- | 0.0 | 126.0 | 252 | 0.4012 | 0.9531 |
179
- | 0.0 | 127.0 | 254 | 0.4015 | 0.9531 |
180
- | 0.0 | 128.0 | 256 | 0.4017 | 0.9531 |
181
- | 0.0 | 129.0 | 258 | 0.4020 | 0.9531 |
182
- | 0.0 | 130.0 | 260 | 0.4023 | 0.9531 |
183
- | 0.0 | 131.0 | 262 | 0.4025 | 0.9531 |
184
- | 0.0 | 132.0 | 264 | 0.4028 | 0.9531 |
185
- | 0.0 | 133.0 | 266 | 0.4031 | 0.9531 |
186
- | 0.0 | 134.0 | 268 | 0.4034 | 0.9531 |
187
- | 0.0 | 135.0 | 270 | 0.4037 | 0.9531 |
188
- | 0.0 | 136.0 | 272 | 0.4039 | 0.9531 |
189
- | 0.0 | 137.0 | 274 | 0.4041 | 0.9531 |
190
- | 0.0 | 138.0 | 276 | 0.4044 | 0.9531 |
191
- | 0.0 | 139.0 | 278 | 0.4046 | 0.9531 |
192
- | 0.0 | 140.0 | 280 | 0.4049 | 0.9531 |
193
- | 0.0 | 141.0 | 282 | 0.4052 | 0.9531 |
194
- | 0.0 | 142.0 | 284 | 0.4054 | 0.9531 |
195
- | 0.0 | 143.0 | 286 | 0.4056 | 0.9531 |
196
- | 0.0 | 144.0 | 288 | 0.4059 | 0.9531 |
197
- | 0.0 | 145.0 | 290 | 0.4061 | 0.9531 |
198
- | 0.0 | 146.0 | 292 | 0.4063 | 0.9531 |
199
- | 0.0 | 147.0 | 294 | 0.4068 | 0.9531 |
200
- | 0.0 | 148.0 | 296 | 0.4072 | 0.9531 |
201
- | 0.0 | 149.0 | 298 | 0.4076 | 0.9531 |
202
- | 0.0 | 150.0 | 300 | 0.4088 | 0.9531 |
203
 
204
 
205
  ### Framework versions
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: albert-base-v2
4
  tags:
5
  - generated_from_trainer
6
  metrics:
 
15
 
16
  # best_model-yelp_polarity-32-21
17
 
18
+ This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.8940
21
+ - Accuracy: 0.875
22
 
23
  ## Model description
24
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
+ | No log | 1.0 | 2 | 0.8845 | 0.875 |
54
+ | No log | 2.0 | 4 | 0.8817 | 0.875 |
55
+ | No log | 3.0 | 6 | 0.8770 | 0.875 |
56
+ | No log | 4.0 | 8 | 0.8735 | 0.875 |
57
+ | 0.4208 | 5.0 | 10 | 0.8676 | 0.875 |
58
+ | 0.4208 | 6.0 | 12 | 0.8661 | 0.875 |
59
+ | 0.4208 | 7.0 | 14 | 0.8671 | 0.875 |
60
+ | 0.4208 | 8.0 | 16 | 0.8603 | 0.875 |
61
+ | 0.4208 | 9.0 | 18 | 0.8539 | 0.875 |
62
+ | 0.3008 | 10.0 | 20 | 0.8486 | 0.875 |
63
+ | 0.3008 | 11.0 | 22 | 0.8322 | 0.875 |
64
+ | 0.3008 | 12.0 | 24 | 0.8044 | 0.875 |
65
+ | 0.3008 | 13.0 | 26 | 0.7829 | 0.875 |
66
+ | 0.3008 | 14.0 | 28 | 0.7727 | 0.875 |
67
+ | 0.1225 | 15.0 | 30 | 0.7704 | 0.875 |
68
+ | 0.1225 | 16.0 | 32 | 0.7792 | 0.8594 |
69
+ | 0.1225 | 17.0 | 34 | 0.7959 | 0.8594 |
70
+ | 0.1225 | 18.0 | 36 | 0.8441 | 0.8594 |
71
+ | 0.1225 | 19.0 | 38 | 0.8519 | 0.8594 |
72
+ | 0.0141 | 20.0 | 40 | 0.8216 | 0.8594 |
73
+ | 0.0141 | 21.0 | 42 | 0.7810 | 0.875 |
74
+ | 0.0141 | 22.0 | 44 | 0.7611 | 0.875 |
75
+ | 0.0141 | 23.0 | 46 | 0.7566 | 0.875 |
76
+ | 0.0141 | 24.0 | 48 | 0.7634 | 0.875 |
77
+ | 0.0011 | 25.0 | 50 | 0.7747 | 0.875 |
78
+ | 0.0011 | 26.0 | 52 | 0.7894 | 0.8594 |
79
+ | 0.0011 | 27.0 | 54 | 0.8063 | 0.8594 |
80
+ | 0.0011 | 28.0 | 56 | 0.8136 | 0.8594 |
81
+ | 0.0011 | 29.0 | 58 | 0.8142 | 0.8594 |
82
+ | 0.0003 | 30.0 | 60 | 0.8096 | 0.8594 |
83
+ | 0.0003 | 31.0 | 62 | 0.8001 | 0.8594 |
84
+ | 0.0003 | 32.0 | 64 | 0.7901 | 0.8594 |
85
+ | 0.0003 | 33.0 | 66 | 0.7819 | 0.875 |
86
+ | 0.0003 | 34.0 | 68 | 0.7763 | 0.875 |
87
+ | 0.0002 | 35.0 | 70 | 0.7729 | 0.875 |
88
+ | 0.0002 | 36.0 | 72 | 0.7707 | 0.875 |
89
+ | 0.0002 | 37.0 | 74 | 0.7693 | 0.875 |
90
+ | 0.0002 | 38.0 | 76 | 0.7684 | 0.875 |
91
+ | 0.0002 | 39.0 | 78 | 0.7684 | 0.875 |
92
+ | 0.0002 | 40.0 | 80 | 0.7686 | 0.875 |
93
+ | 0.0002 | 41.0 | 82 | 0.7692 | 0.875 |
94
+ | 0.0002 | 42.0 | 84 | 0.7701 | 0.875 |
95
+ | 0.0002 | 43.0 | 86 | 0.7712 | 0.875 |
96
+ | 0.0002 | 44.0 | 88 | 0.7726 | 0.875 |
97
+ | 0.0002 | 45.0 | 90 | 0.7741 | 0.875 |
98
+ | 0.0002 | 46.0 | 92 | 0.7758 | 0.875 |
99
+ | 0.0002 | 47.0 | 94 | 0.7778 | 0.875 |
100
+ | 0.0002 | 48.0 | 96 | 0.7796 | 0.875 |
101
+ | 0.0002 | 49.0 | 98 | 0.7815 | 0.875 |
102
+ | 0.0001 | 50.0 | 100 | 0.7835 | 0.875 |
103
+ | 0.0001 | 51.0 | 102 | 0.7855 | 0.875 |
104
+ | 0.0001 | 52.0 | 104 | 0.7872 | 0.875 |
105
+ | 0.0001 | 53.0 | 106 | 0.7888 | 0.875 |
106
+ | 0.0001 | 54.0 | 108 | 0.7905 | 0.875 |
107
+ | 0.0001 | 55.0 | 110 | 0.7922 | 0.875 |
108
+ | 0.0001 | 56.0 | 112 | 0.7938 | 0.875 |
109
+ | 0.0001 | 57.0 | 114 | 0.7954 | 0.875 |
110
+ | 0.0001 | 58.0 | 116 | 0.7969 | 0.875 |
111
+ | 0.0001 | 59.0 | 118 | 0.7982 | 0.875 |
112
+ | 0.0001 | 60.0 | 120 | 0.7995 | 0.875 |
113
+ | 0.0001 | 61.0 | 122 | 0.8007 | 0.875 |
114
+ | 0.0001 | 62.0 | 124 | 0.8020 | 0.875 |
115
+ | 0.0001 | 63.0 | 126 | 0.8031 | 0.875 |
116
+ | 0.0001 | 64.0 | 128 | 0.8041 | 0.875 |
117
+ | 0.0001 | 65.0 | 130 | 0.8052 | 0.875 |
118
+ | 0.0001 | 66.0 | 132 | 0.8063 | 0.875 |
119
+ | 0.0001 | 67.0 | 134 | 0.8073 | 0.875 |
120
+ | 0.0001 | 68.0 | 136 | 0.8084 | 0.875 |
121
+ | 0.0001 | 69.0 | 138 | 0.8095 | 0.875 |
122
+ | 0.0001 | 70.0 | 140 | 0.8104 | 0.875 |
123
+ | 0.0001 | 71.0 | 142 | 0.8115 | 0.875 |
124
+ | 0.0001 | 72.0 | 144 | 0.8125 | 0.875 |
125
+ | 0.0001 | 73.0 | 146 | 0.8135 | 0.875 |
126
+ | 0.0001 | 74.0 | 148 | 0.8143 | 0.875 |
127
+ | 0.0001 | 75.0 | 150 | 0.8151 | 0.875 |
128
+ | 0.0001 | 76.0 | 152 | 0.8159 | 0.875 |
129
+ | 0.0001 | 77.0 | 154 | 0.8167 | 0.875 |
130
+ | 0.0001 | 78.0 | 156 | 0.8176 | 0.875 |
131
+ | 0.0001 | 79.0 | 158 | 0.8187 | 0.875 |
132
+ | 0.0001 | 80.0 | 160 | 0.8198 | 0.875 |
133
+ | 0.0001 | 81.0 | 162 | 0.8210 | 0.875 |
134
+ | 0.0001 | 82.0 | 164 | 0.8222 | 0.875 |
135
+ | 0.0001 | 83.0 | 166 | 0.8232 | 0.875 |
136
+ | 0.0001 | 84.0 | 168 | 0.8243 | 0.875 |
137
+ | 0.0001 | 85.0 | 170 | 0.8254 | 0.875 |
138
+ | 0.0001 | 86.0 | 172 | 0.8266 | 0.875 |
139
+ | 0.0001 | 87.0 | 174 | 0.8278 | 0.875 |
140
+ | 0.0001 | 88.0 | 176 | 0.8290 | 0.875 |
141
+ | 0.0001 | 89.0 | 178 | 0.8302 | 0.875 |
142
+ | 0.0001 | 90.0 | 180 | 0.8314 | 0.875 |
143
+ | 0.0001 | 91.0 | 182 | 0.8326 | 0.875 |
144
+ | 0.0001 | 92.0 | 184 | 0.8337 | 0.875 |
145
+ | 0.0001 | 93.0 | 186 | 0.8347 | 0.875 |
146
+ | 0.0001 | 94.0 | 188 | 0.8358 | 0.875 |
147
+ | 0.0001 | 95.0 | 190 | 0.8369 | 0.875 |
148
+ | 0.0001 | 96.0 | 192 | 0.8379 | 0.875 |
149
+ | 0.0001 | 97.0 | 194 | 0.8390 | 0.875 |
150
+ | 0.0001 | 98.0 | 196 | 0.8401 | 0.875 |
151
+ | 0.0001 | 99.0 | 198 | 0.8411 | 0.875 |
152
+ | 0.0001 | 100.0 | 200 | 0.8421 | 0.875 |
153
+ | 0.0001 | 101.0 | 202 | 0.8431 | 0.875 |
154
+ | 0.0001 | 102.0 | 204 | 0.8442 | 0.875 |
155
+ | 0.0001 | 103.0 | 206 | 0.8454 | 0.875 |
156
+ | 0.0001 | 104.0 | 208 | 0.8464 | 0.875 |
157
+ | 0.0001 | 105.0 | 210 | 0.8475 | 0.875 |
158
+ | 0.0001 | 106.0 | 212 | 0.8486 | 0.875 |
159
+ | 0.0001 | 107.0 | 214 | 0.8498 | 0.875 |
160
+ | 0.0001 | 108.0 | 216 | 0.8510 | 0.875 |
161
+ | 0.0001 | 109.0 | 218 | 0.8520 | 0.875 |
162
+ | 0.0001 | 110.0 | 220 | 0.8532 | 0.875 |
163
+ | 0.0001 | 111.0 | 222 | 0.8544 | 0.875 |
164
+ | 0.0001 | 112.0 | 224 | 0.8556 | 0.875 |
165
+ | 0.0001 | 113.0 | 226 | 0.8568 | 0.875 |
166
+ | 0.0001 | 114.0 | 228 | 0.8580 | 0.875 |
167
+ | 0.0 | 115.0 | 230 | 0.8591 | 0.875 |
168
+ | 0.0 | 116.0 | 232 | 0.8601 | 0.875 |
169
+ | 0.0 | 117.0 | 234 | 0.8612 | 0.875 |
170
+ | 0.0 | 118.0 | 236 | 0.8623 | 0.875 |
171
+ | 0.0 | 119.0 | 238 | 0.8633 | 0.875 |
172
+ | 0.0 | 120.0 | 240 | 0.8643 | 0.875 |
173
+ | 0.0 | 121.0 | 242 | 0.8652 | 0.875 |
174
+ | 0.0 | 122.0 | 244 | 0.8662 | 0.875 |
175
+ | 0.0 | 123.0 | 246 | 0.8671 | 0.875 |
176
+ | 0.0 | 124.0 | 248 | 0.8680 | 0.875 |
177
+ | 0.0 | 125.0 | 250 | 0.8689 | 0.875 |
178
+ | 0.0 | 126.0 | 252 | 0.8699 | 0.875 |
179
+ | 0.0 | 127.0 | 254 | 0.8708 | 0.875 |
180
+ | 0.0 | 128.0 | 256 | 0.8717 | 0.875 |
181
+ | 0.0 | 129.0 | 258 | 0.8727 | 0.875 |
182
+ | 0.0 | 130.0 | 260 | 0.8736 | 0.875 |
183
+ | 0.0 | 131.0 | 262 | 0.8746 | 0.875 |
184
+ | 0.0 | 132.0 | 264 | 0.8755 | 0.875 |
185
+ | 0.0 | 133.0 | 266 | 0.8764 | 0.875 |
186
+ | 0.0 | 134.0 | 268 | 0.8774 | 0.875 |
187
+ | 0.0 | 135.0 | 270 | 0.8784 | 0.875 |
188
+ | 0.0 | 136.0 | 272 | 0.8794 | 0.875 |
189
+ | 0.0 | 137.0 | 274 | 0.8803 | 0.875 |
190
+ | 0.0 | 138.0 | 276 | 0.8814 | 0.875 |
191
+ | 0.0 | 139.0 | 278 | 0.8825 | 0.875 |
192
+ | 0.0 | 140.0 | 280 | 0.8835 | 0.875 |
193
+ | 0.0 | 141.0 | 282 | 0.8846 | 0.875 |
194
+ | 0.0 | 142.0 | 284 | 0.8857 | 0.875 |
195
+ | 0.0 | 143.0 | 286 | 0.8869 | 0.875 |
196
+ | 0.0 | 144.0 | 288 | 0.8880 | 0.875 |
197
+ | 0.0 | 145.0 | 290 | 0.8890 | 0.875 |
198
+ | 0.0 | 146.0 | 292 | 0.8900 | 0.875 |
199
+ | 0.0 | 147.0 | 294 | 0.8911 | 0.875 |
200
+ | 0.0 | 148.0 | 296 | 0.8921 | 0.875 |
201
+ | 0.0 | 149.0 | 298 | 0.8931 | 0.875 |
202
+ | 0.0 | 150.0 | 300 | 0.8940 | 0.875 |
203
 
204
 
205
  ### Framework versions