update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: bert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: best_model-sst-2-16-13
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# best_model-sst-2-16-13
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.6655
|
21 |
+
- Accuracy: 0.5938
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 2e-05
|
41 |
+
- train_batch_size: 32
|
42 |
+
- eval_batch_size: 32
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_steps: 500
|
47 |
+
- num_epochs: 50
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
53 |
+
| No log | 1.0 | 1 | 0.7052 | 0.5312 |
|
54 |
+
| No log | 2.0 | 2 | 0.7051 | 0.5312 |
|
55 |
+
| No log | 3.0 | 3 | 0.7050 | 0.5312 |
|
56 |
+
| No log | 4.0 | 4 | 0.7048 | 0.5312 |
|
57 |
+
| No log | 5.0 | 5 | 0.7045 | 0.5312 |
|
58 |
+
| No log | 6.0 | 6 | 0.7042 | 0.5312 |
|
59 |
+
| No log | 7.0 | 7 | 0.7038 | 0.5312 |
|
60 |
+
| No log | 8.0 | 8 | 0.7034 | 0.5312 |
|
61 |
+
| No log | 9.0 | 9 | 0.7029 | 0.5312 |
|
62 |
+
| 0.7492 | 10.0 | 10 | 0.7023 | 0.5312 |
|
63 |
+
| 0.7492 | 11.0 | 11 | 0.7017 | 0.5312 |
|
64 |
+
| 0.7492 | 12.0 | 12 | 0.7010 | 0.5312 |
|
65 |
+
| 0.7492 | 13.0 | 13 | 0.7002 | 0.5312 |
|
66 |
+
| 0.7492 | 14.0 | 14 | 0.6994 | 0.5312 |
|
67 |
+
| 0.7492 | 15.0 | 15 | 0.6985 | 0.5312 |
|
68 |
+
| 0.7492 | 16.0 | 16 | 0.6976 | 0.5312 |
|
69 |
+
| 0.7492 | 17.0 | 17 | 0.6966 | 0.5312 |
|
70 |
+
| 0.7492 | 18.0 | 18 | 0.6956 | 0.5312 |
|
71 |
+
| 0.7492 | 19.0 | 19 | 0.6946 | 0.5312 |
|
72 |
+
| 0.7304 | 20.0 | 20 | 0.6935 | 0.5312 |
|
73 |
+
| 0.7304 | 21.0 | 21 | 0.6924 | 0.5 |
|
74 |
+
| 0.7304 | 22.0 | 22 | 0.6912 | 0.5625 |
|
75 |
+
| 0.7304 | 23.0 | 23 | 0.6900 | 0.5625 |
|
76 |
+
| 0.7304 | 24.0 | 24 | 0.6887 | 0.5625 |
|
77 |
+
| 0.7304 | 25.0 | 25 | 0.6875 | 0.5625 |
|
78 |
+
| 0.7304 | 26.0 | 26 | 0.6861 | 0.5625 |
|
79 |
+
| 0.7304 | 27.0 | 27 | 0.6849 | 0.5625 |
|
80 |
+
| 0.7304 | 28.0 | 28 | 0.6836 | 0.5625 |
|
81 |
+
| 0.7304 | 29.0 | 29 | 0.6823 | 0.5625 |
|
82 |
+
| 0.6885 | 30.0 | 30 | 0.6812 | 0.5938 |
|
83 |
+
| 0.6885 | 31.0 | 31 | 0.6800 | 0.5625 |
|
84 |
+
| 0.6885 | 32.0 | 32 | 0.6789 | 0.5625 |
|
85 |
+
| 0.6885 | 33.0 | 33 | 0.6779 | 0.5312 |
|
86 |
+
| 0.6885 | 34.0 | 34 | 0.6772 | 0.5312 |
|
87 |
+
| 0.6885 | 35.0 | 35 | 0.6763 | 0.5312 |
|
88 |
+
| 0.6885 | 36.0 | 36 | 0.6753 | 0.5625 |
|
89 |
+
| 0.6885 | 37.0 | 37 | 0.6744 | 0.5625 |
|
90 |
+
| 0.6885 | 38.0 | 38 | 0.6734 | 0.5938 |
|
91 |
+
| 0.6885 | 39.0 | 39 | 0.6724 | 0.5938 |
|
92 |
+
| 0.6578 | 40.0 | 40 | 0.6715 | 0.625 |
|
93 |
+
| 0.6578 | 41.0 | 41 | 0.6707 | 0.5938 |
|
94 |
+
| 0.6578 | 42.0 | 42 | 0.6699 | 0.625 |
|
95 |
+
| 0.6578 | 43.0 | 43 | 0.6692 | 0.625 |
|
96 |
+
| 0.6578 | 44.0 | 44 | 0.6686 | 0.6562 |
|
97 |
+
| 0.6578 | 45.0 | 45 | 0.6681 | 0.6562 |
|
98 |
+
| 0.6578 | 46.0 | 46 | 0.6679 | 0.6562 |
|
99 |
+
| 0.6578 | 47.0 | 47 | 0.6677 | 0.5938 |
|
100 |
+
| 0.6578 | 48.0 | 48 | 0.6673 | 0.5938 |
|
101 |
+
| 0.6578 | 49.0 | 49 | 0.6665 | 0.5938 |
|
102 |
+
| 0.5964 | 50.0 | 50 | 0.6655 | 0.5938 |
|
103 |
+
|
104 |
+
|
105 |
+
### Framework versions
|
106 |
+
|
107 |
+
- Transformers 4.32.0.dev0
|
108 |
+
- Pytorch 2.0.1+cu118
|
109 |
+
- Datasets 2.4.0
|
110 |
+
- Tokenizers 0.13.3
|