simoneteglia commited on
Commit
dd16128
1 Parent(s): 8d6efb3

My first lunar lander module using DRL and PPO

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 244.13 +/- 38.49
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f96c5225630>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f96c52256c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f96c5225750>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f96c52257e0>", "_build": "<function ActorCriticPolicy._build at 0x7f96c5225870>", "forward": "<function ActorCriticPolicy.forward at 0x7f96c5225900>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f96c5225990>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f96c5225a20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f96c5225ab0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f96c5225b40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f96c5225bd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f96c5225c60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f96c521e7c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683646934072424664, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpRMD17npi65qeHOu3sT7aExYo64W+cuQAAgD8AAIA/GkVYPeGQpbpwC+M6ajYrtvHPgLp4YwK6AACAPwAAgD8A3748FMiouk1WbjvTuPA3pM7BulEIKLoAAIA/AACAPwD/w7zDYVW6GzSdO6bOfjaBA846ZDG5ugAAgD8AAIA/mqkUPpok2D4qyqg8HvGCvn+oyTu0lLI9AAAAAAAAAABmGn29w7FWugbeqjeezRozfZxHOr9zxrYAAIA/AACAPwCSOj2P1mC6UGXROulJrTWFwlW4Rtn1uQAAgD8AAIA/ADoCPCmoL7rgiG87ZRtKOMvYVroOfeG4AACAPwAAgD8aiQQ9SFOaulbSSLlJK82zNXXGustMZjgAAIA/AACAPzP5CL1SQJe5vHlKOn63IbXht6w30wJvuQAAgD8AAIA/s0qYPeFCgbprRjy7RjoZtvsYODuAtFc6AACAPwAAgD+aM9E9hgHHPor/67060gm+XsWBvF0M7DwAAAAAAAAAAM2fpj1cqz+6AT4hOtES5zRcfKg53i06uQAAgD8AAIA/ACuqPK6v7Dl7CNG6AkcRtst3DzwKLfw5AACAPwAAgD+aKrA+uutJP6KAIT1nOnW+hlQFPrp9Sj0AAAAAAAAAAGY2VTtce0K6LouQuoIN0LVcLLC6iX2nOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGEcKA8SwnqMAWyUTegDjAF0lEdAnz0Wd7OVxHV9lChoBkdAZRyWkadc0WgHTegDaAhHQJ9OeVt4zJp1fZQoaAZHQFpuXYlIEr5oB03oA2gIR0CfVuVbzK9xdX2UKGgGR0BjJyZ2IO6NaAdN6ANoCEdAn1ygRK6FunV9lChoBkdAYOxF7Uoa1mgHTegDaAhHQJ9hgZBLPD51fZQoaAZHQGQc+1a4c3loB03oA2gIR0CfZFS+g13udX2UKGgGR0BhdO56MR6GaAdN6ANoCEdAn2Tj5XU6P3V9lChoBkdAYXdwm3OObWgHTegDaAhHQJ9oTLW7OFB1fZQoaAZHQDR+gVXV9WpoB00SAWgIR0Cfa5uEEkjYdX2UKGgGR0BeRBO58Sf2aAdN6ANoCEdAn3lVGkN4JXV9lChoBkdAXE0KYzBRAWgHTegDaAhHQJ+Ayu7pV0d1fZQoaAZHQGBBv5P/JeVoB03oA2gIR0CfhMyhSLqEdX2UKGgGR0BirsDr7fpEaAdN6ANoCEdAn4UT3IuGsXV9lChoBkdAXXxjBl+VkmgHTegDaAhHQJ+G1MXaakR1fZQoaAZHQF+QX/HYHxBoB03oA2gIR0Cfh8oRIz3zdX2UKGgGR0BjkCKm8/UwaAdN6ANoCEdAn5LuLFXJYHV9lChoBkdAZ0Wn4wh4dWgHTegDaAhHQJ+VwvkBCD51fZQoaAZHQGgOuMl1KXhoB03oA2gIR0CfmPEOy3TedX2UKGgGR0BhHMriEQGwaAdN6ANoCEdAn5psUEgW8HV9lChoBkdAW+0c81XNkmgHTegDaAhHQJ/Ami0v4/N1fZQoaAZHQGN2ggow22poB03oA2gIR0CfxpGLDQ7cdX2UKGgGR0BgzLvw3HaOaAdN6ANoCEdAn8m1AE+xGHV9lChoBkdAYjPNTtLL6mgHTegDaAhHQJ/KJsk6cRV1fZQoaAZHQF2XAuZkTYdoB03oA2gIR0CfzO8+iaiLdX2UKGgGR0BlIflEJBw/aAdN6ANoCEdAn8+qJVKf4HV9lChoBkdAYF1cqOLiuWgHTegDaAhHQJ/c41AJLM91fZQoaAZHQGBDmgSOBDpoB03oA2gIR0Cf6PKhL5ARdX2UKGgGR0BlhHyPMjeLaAdN6ANoCEdAn+2piuuA7XV9lChoBkdAYdf/z8P4EmgHTegDaAhHQJ/t9BF/hEV1fZQoaAZHQGDFqwhW5pdoB03oA2gIR0Cf77NxVAAydX2UKGgGR0Bi1xAMUh3aaAdN6ANoCEdAn/CtaEBbOnV9lChoBkdAY4H1wo9cKWgHTegDaAhHQJ/7HrJKaod1fZQoaAZHQFxTplz2exxoB03oA2gIR0Cf/bUypJf6dX2UKGgGR0BhE2Xw9aEBaAdN6ANoCEdAoAAwdbPhQ3V9lChoBkdAZu956dDpkmgHTegDaAhHQKAAvrvb48F1fZQoaAZHQGNVbh3qzJJoB03oA2gIR0CgEaWsJY1YdX2UKGgGR0BmC5UcXFcZaAdN6ANoCEdAoBTfyLAHmnV9lChoBkdAYaEkRjBl+WgHTegDaAhHQKAWQgU1yeZ1fZQoaAZHQGKb/3N9ph5oB03oA2gIR0CgFneoDPnkdX2UKGgGR0BiAIbjtG/faAdN6ANoCEdAoBe26Ae7tnV9lChoBkdAYLN0J4SpSGgHTegDaAhHQKAY576YVqN1fZQoaAZHQGBNFuFYdQxoB03oA2gIR0CgHYNJe3QVdX2UKGgGR0BioWb9ZRsNaAdN6ANoCEdAoCD42dd3S3V9lChoBkdAZdtke6qbSmgHTegDaAhHQKAiv4M4LkV1fZQoaAZHQGYnfjjrAxloB03oA2gIR0CgIurfk3judX2UKGgGR0BkVN5prULEaAdN6ANoCEdAoCPEOTaCc3V9lChoBkdAX97xnWattGgHTegDaAhHQKAkNwqAjIJ1fZQoaAZHQGZp3gDRtxdoB03oA2gIR0CgKWliz9jxdX2UKGgGR0BoE2jua4MGaAdN6ANoCEdAoCsN/Ue+23V9lChoBkdAYVENvwVj7WgHTegDaAhHQKAs9MewLVp1fZQoaAZHQGQqvIn0CihoB03oA2gIR0CgLdTnzQNTdX2UKGgGR0Av0a+evpyIaAdNEQFoCEdAoD0EJ2MbWHV9lChoBkdAYRvHQQcxTWgHTegDaAhHQKA9fqoIfKZ1fZQoaAZHQGLYLaVUuL9oB03oA2gIR0CgQAsJIDoydX2UKGgGR0BYgqcEvCdjaAdN6ANoCEdAoEFOSOinHnV9lChoBkdAYdR8O09hZ2gHTegDaAhHQKBBf34bjtJ1fZQoaAZHQGVkcsMAmzBoB03oA2gIR0CgQr47aIvbdX2UKGgGR0Blyd05lvqDaAdN6ANoCEdAoEPp5VwPy3V9lChoBkdAYP1n13+uNmgHTegDaAhHQKBKRIRRMvh1fZQoaAZHQF4wKf4AS39oB03oA2gIR0CgT43u/k/9dX2UKGgGR0Bj446S1Vo6aAdN6ANoCEdAoFFvUaya/nV9lChoBkdAZOLid8RcvGgHTegDaAhHQKBRkr0aqCJ1fZQoaAZHQGT6+dbxEv1oB03oA2gIR0CgUnmXPZ7HdX2UKGgGR0BkgyCUX531aAdN6ANoCEdAoFLz4zrNW3V9lChoBkdAYkQl9BrvcGgHTegDaAhHQKBZtpudf9h1fZQoaAZHQGF0c/lhgE5oB03oA2gIR0CgWxVO9FnadX2UKGgGR0Bhi0qe9SMtaAdN6ANoCEdAoFusHUtqYnV9lChoBkdAY5+J3xFy72gHTegDaAhHQKBr9pJwsGx1fZQoaAZHQGZos2WIGhVoB03oA2gIR0CgbGatT1kEdX2UKGgGR0BbUp00WM0haAdN6ANoCEdAoG7dJOFg2XV9lChoBkdAZeGIvalDW2gHTegDaAhHQKBwKDCgsbx1fZQoaAZHQGbcLIPsiStoB03oA2gIR0CgcFeXZ5AydX2UKGgGR0Bf8Io/iYLLaAdN6ANoCEdAoHF8Rvm5lXV9lChoBkdAYcvl6JIlMWgHTegDaAhHQKBylU6xPft1fZQoaAZHQEq6M1CPZIxoB00uAWgIR0CgdWiMPz4DdX2UKGgGR0Bjg0iGFi8WaAdN6ANoCEdAoHdlejVQRHV9lChoBkdAYnJCKJl8PWgHTegDaAhHQKB6r0hePaN1fZQoaAZHQGJd1BdD6WRoB03oA2gIR0CgfHUPH1e0dX2UKGgGR0BednJ9y926aAdN6ANoCEdAoHyaOearm3V9lChoBkdAY7FOpKjBVWgHTegDaAhHQKB9ckTpPh11fZQoaAZHQGQx/29L6DZoB03oA2gIR0CgfffK6nR+dX2UKGgGR0Bmqjc6/7BPaAdN6ANoCEdAoIb0fzSThnV9lChoBkdAYvbwG4ZuRGgHTegDaAhHQKCJQOAiFCd1fZQoaAZHQGBjQAlv60poB03oA2gIR0Cgifw79ycTdX2UKGgGR0BjttfCyhSMaAdN6ANoCEdAoJk/EGZ/kXV9lChoBkdAYmX1loUSI2gHTegDaAhHQKCcEyNXHR11fZQoaAZHQGGTzBRAKOVoB03oA2gIR0CgnZqveP7vdX2UKGgGR0Bkr7IzWPLgaAdN6ANoCEdAoJ3mK4x1xXV9lChoBkdAWenCUHIIW2gHTegDaAhHQKCfoEOAiFF1fZQoaAZHQGMczDfm9xpoB03oA2gIR0CgoUCLEUCadX2UKGgGR0BguhyOq//OaAdN6ANoCEdAoKUpBNVR13V9lChoBkdAXqjTBqKxcGgHTegDaAhHQKCneFINEw51fZQoaAZHQF8rslb/wRZoB03oA2gIR0CgqoiCrcTKdX2UKGgGR0BocitozvZzaAdN6ANoCEdAoKwC8e0XxnV9lChoBkdAYuxdadMCcWgHTegDaAhHQKCsIYCQtBh1fZQoaAZHQF7SdC3PRiRoB03oA2gIR0CgrNgpjMFEdX2UKGgGR0Bb/dcnmaH9aAdN6ANoCEdAoK0+43FUAHV9lChoBkdAYu0yuZCv5mgHTegDaAhHQKCzIWoFV1h1fZQoaAZHQGRiudPLxI9oB03oA2gIR0CgtG7GNrCWdX2UKGgGR0BjdDJU5uIiaAdN6ANoCEdAoLT/nQpnYnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4ce5515df97edfedde631eac98402f5a291d9c535d91bb894b9bd5b25b1e481
3
+ size 146759
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f96c5225630>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f96c52256c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f96c5225750>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f96c52257e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f96c5225870>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f96c5225900>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f96c5225990>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f96c5225a20>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f96c5225ab0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f96c5225b40>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f96c5225bd0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f96c5225c60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f96c521e7c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1683646934072424664,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpRMD17npi65qeHOu3sT7aExYo64W+cuQAAgD8AAIA/GkVYPeGQpbpwC+M6ajYrtvHPgLp4YwK6AACAPwAAgD8A3748FMiouk1WbjvTuPA3pM7BulEIKLoAAIA/AACAPwD/w7zDYVW6GzSdO6bOfjaBA846ZDG5ugAAgD8AAIA/mqkUPpok2D4qyqg8HvGCvn+oyTu0lLI9AAAAAAAAAABmGn29w7FWugbeqjeezRozfZxHOr9zxrYAAIA/AACAPwCSOj2P1mC6UGXROulJrTWFwlW4Rtn1uQAAgD8AAIA/ADoCPCmoL7rgiG87ZRtKOMvYVroOfeG4AACAPwAAgD8aiQQ9SFOaulbSSLlJK82zNXXGustMZjgAAIA/AACAPzP5CL1SQJe5vHlKOn63IbXht6w30wJvuQAAgD8AAIA/s0qYPeFCgbprRjy7RjoZtvsYODuAtFc6AACAPwAAgD+aM9E9hgHHPor/67060gm+XsWBvF0M7DwAAAAAAAAAAM2fpj1cqz+6AT4hOtES5zRcfKg53i06uQAAgD8AAIA/ACuqPK6v7Dl7CNG6AkcRtst3DzwKLfw5AACAPwAAgD+aKrA+uutJP6KAIT1nOnW+hlQFPrp9Sj0AAAAAAAAAAGY2VTtce0K6LouQuoIN0LVcLLC6iX2nOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGEcKA8SwnqMAWyUTegDjAF0lEdAnz0Wd7OVxHV9lChoBkdAZRyWkadc0WgHTegDaAhHQJ9OeVt4zJp1fZQoaAZHQFpuXYlIEr5oB03oA2gIR0CfVuVbzK9xdX2UKGgGR0BjJyZ2IO6NaAdN6ANoCEdAn1ygRK6FunV9lChoBkdAYOxF7Uoa1mgHTegDaAhHQJ9hgZBLPD51fZQoaAZHQGQc+1a4c3loB03oA2gIR0CfZFS+g13udX2UKGgGR0BhdO56MR6GaAdN6ANoCEdAn2Tj5XU6P3V9lChoBkdAYXdwm3OObWgHTegDaAhHQJ9oTLW7OFB1fZQoaAZHQDR+gVXV9WpoB00SAWgIR0Cfa5uEEkjYdX2UKGgGR0BeRBO58Sf2aAdN6ANoCEdAn3lVGkN4JXV9lChoBkdAXE0KYzBRAWgHTegDaAhHQJ+Ayu7pV0d1fZQoaAZHQGBBv5P/JeVoB03oA2gIR0CfhMyhSLqEdX2UKGgGR0BirsDr7fpEaAdN6ANoCEdAn4UT3IuGsXV9lChoBkdAXXxjBl+VkmgHTegDaAhHQJ+G1MXaakR1fZQoaAZHQF+QX/HYHxBoB03oA2gIR0Cfh8oRIz3zdX2UKGgGR0BjkCKm8/UwaAdN6ANoCEdAn5LuLFXJYHV9lChoBkdAZ0Wn4wh4dWgHTegDaAhHQJ+VwvkBCD51fZQoaAZHQGgOuMl1KXhoB03oA2gIR0CfmPEOy3TedX2UKGgGR0BhHMriEQGwaAdN6ANoCEdAn5psUEgW8HV9lChoBkdAW+0c81XNkmgHTegDaAhHQJ/Ami0v4/N1fZQoaAZHQGN2ggow22poB03oA2gIR0CfxpGLDQ7cdX2UKGgGR0BgzLvw3HaOaAdN6ANoCEdAn8m1AE+xGHV9lChoBkdAYjPNTtLL6mgHTegDaAhHQJ/KJsk6cRV1fZQoaAZHQF2XAuZkTYdoB03oA2gIR0CfzO8+iaiLdX2UKGgGR0BlIflEJBw/aAdN6ANoCEdAn8+qJVKf4HV9lChoBkdAYF1cqOLiuWgHTegDaAhHQJ/c41AJLM91fZQoaAZHQGBDmgSOBDpoB03oA2gIR0Cf6PKhL5ARdX2UKGgGR0BlhHyPMjeLaAdN6ANoCEdAn+2piuuA7XV9lChoBkdAYdf/z8P4EmgHTegDaAhHQJ/t9BF/hEV1fZQoaAZHQGDFqwhW5pdoB03oA2gIR0Cf77NxVAAydX2UKGgGR0Bi1xAMUh3aaAdN6ANoCEdAn/CtaEBbOnV9lChoBkdAY4H1wo9cKWgHTegDaAhHQJ/7HrJKaod1fZQoaAZHQFxTplz2exxoB03oA2gIR0Cf/bUypJf6dX2UKGgGR0BhE2Xw9aEBaAdN6ANoCEdAoAAwdbPhQ3V9lChoBkdAZu956dDpkmgHTegDaAhHQKAAvrvb48F1fZQoaAZHQGNVbh3qzJJoB03oA2gIR0CgEaWsJY1YdX2UKGgGR0BmC5UcXFcZaAdN6ANoCEdAoBTfyLAHmnV9lChoBkdAYaEkRjBl+WgHTegDaAhHQKAWQgU1yeZ1fZQoaAZHQGKb/3N9ph5oB03oA2gIR0CgFneoDPnkdX2UKGgGR0BiAIbjtG/faAdN6ANoCEdAoBe26Ae7tnV9lChoBkdAYLN0J4SpSGgHTegDaAhHQKAY576YVqN1fZQoaAZHQGBNFuFYdQxoB03oA2gIR0CgHYNJe3QVdX2UKGgGR0BioWb9ZRsNaAdN6ANoCEdAoCD42dd3S3V9lChoBkdAZdtke6qbSmgHTegDaAhHQKAiv4M4LkV1fZQoaAZHQGYnfjjrAxloB03oA2gIR0CgIurfk3judX2UKGgGR0BkVN5prULEaAdN6ANoCEdAoCPEOTaCc3V9lChoBkdAX97xnWattGgHTegDaAhHQKAkNwqAjIJ1fZQoaAZHQGZp3gDRtxdoB03oA2gIR0CgKWliz9jxdX2UKGgGR0BoE2jua4MGaAdN6ANoCEdAoCsN/Ue+23V9lChoBkdAYVENvwVj7WgHTegDaAhHQKAs9MewLVp1fZQoaAZHQGQqvIn0CihoB03oA2gIR0CgLdTnzQNTdX2UKGgGR0Av0a+evpyIaAdNEQFoCEdAoD0EJ2MbWHV9lChoBkdAYRvHQQcxTWgHTegDaAhHQKA9fqoIfKZ1fZQoaAZHQGLYLaVUuL9oB03oA2gIR0CgQAsJIDoydX2UKGgGR0BYgqcEvCdjaAdN6ANoCEdAoEFOSOinHnV9lChoBkdAYdR8O09hZ2gHTegDaAhHQKBBf34bjtJ1fZQoaAZHQGVkcsMAmzBoB03oA2gIR0CgQr47aIvbdX2UKGgGR0Blyd05lvqDaAdN6ANoCEdAoEPp5VwPy3V9lChoBkdAYP1n13+uNmgHTegDaAhHQKBKRIRRMvh1fZQoaAZHQF4wKf4AS39oB03oA2gIR0CgT43u/k/9dX2UKGgGR0Bj446S1Vo6aAdN6ANoCEdAoFFvUaya/nV9lChoBkdAZOLid8RcvGgHTegDaAhHQKBRkr0aqCJ1fZQoaAZHQGT6+dbxEv1oB03oA2gIR0CgUnmXPZ7HdX2UKGgGR0BkgyCUX531aAdN6ANoCEdAoFLz4zrNW3V9lChoBkdAYkQl9BrvcGgHTegDaAhHQKBZtpudf9h1fZQoaAZHQGF0c/lhgE5oB03oA2gIR0CgWxVO9FnadX2UKGgGR0Bhi0qe9SMtaAdN6ANoCEdAoFusHUtqYnV9lChoBkdAY5+J3xFy72gHTegDaAhHQKBr9pJwsGx1fZQoaAZHQGZos2WIGhVoB03oA2gIR0CgbGatT1kEdX2UKGgGR0BbUp00WM0haAdN6ANoCEdAoG7dJOFg2XV9lChoBkdAZeGIvalDW2gHTegDaAhHQKBwKDCgsbx1fZQoaAZHQGbcLIPsiStoB03oA2gIR0CgcFeXZ5AydX2UKGgGR0Bf8Io/iYLLaAdN6ANoCEdAoHF8Rvm5lXV9lChoBkdAYcvl6JIlMWgHTegDaAhHQKBylU6xPft1fZQoaAZHQEq6M1CPZIxoB00uAWgIR0CgdWiMPz4DdX2UKGgGR0Bjg0iGFi8WaAdN6ANoCEdAoHdlejVQRHV9lChoBkdAYnJCKJl8PWgHTegDaAhHQKB6r0hePaN1fZQoaAZHQGJd1BdD6WRoB03oA2gIR0CgfHUPH1e0dX2UKGgGR0BednJ9y926aAdN6ANoCEdAoHyaOearm3V9lChoBkdAY7FOpKjBVWgHTegDaAhHQKB9ckTpPh11fZQoaAZHQGQx/29L6DZoB03oA2gIR0CgfffK6nR+dX2UKGgGR0Bmqjc6/7BPaAdN6ANoCEdAoIb0fzSThnV9lChoBkdAYvbwG4ZuRGgHTegDaAhHQKCJQOAiFCd1fZQoaAZHQGBjQAlv60poB03oA2gIR0Cgifw79ycTdX2UKGgGR0BjttfCyhSMaAdN6ANoCEdAoJk/EGZ/kXV9lChoBkdAYmX1loUSI2gHTegDaAhHQKCcEyNXHR11fZQoaAZHQGGTzBRAKOVoB03oA2gIR0CgnZqveP7vdX2UKGgGR0Bkr7IzWPLgaAdN6ANoCEdAoJ3mK4x1xXV9lChoBkdAWenCUHIIW2gHTegDaAhHQKCfoEOAiFF1fZQoaAZHQGMczDfm9xpoB03oA2gIR0CgoUCLEUCadX2UKGgGR0BguhyOq//OaAdN6ANoCEdAoKUpBNVR13V9lChoBkdAXqjTBqKxcGgHTegDaAhHQKCneFINEw51fZQoaAZHQF8rslb/wRZoB03oA2gIR0CgqoiCrcTKdX2UKGgGR0BocitozvZzaAdN6ANoCEdAoKwC8e0XxnV9lChoBkdAYuxdadMCcWgHTegDaAhHQKCsIYCQtBh1fZQoaAZHQF7SdC3PRiRoB03oA2gIR0CgrNgpjMFEdX2UKGgGR0Bb/dcnmaH9aAdN6ANoCEdAoK0+43FUAHV9lChoBkdAYu0yuZCv5mgHTegDaAhHQKCzIWoFV1h1fZQoaAZHQGRiudPLxI9oB03oA2gIR0CgtG7GNrCWdX2UKGgGR0BjdDJU5uIiaAdN6ANoCEdAoLT/nQpnYnVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59ec39cf0215df3636987808089a972228e18864a042926cf07c1c779bcfed1f
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43f21d31f947062b888411efa1b2a7b5ac6ab3d7fd3000849ccf7561278213ad
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (189 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 244.12641534440218, "std_reward": 38.4923261687502, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-09T16:14:18.245415"}