ubuntu
commited on
Commit
·
bbd6d64
1
Parent(s):
30cba57
first version
Browse files- config.json +37 -0
- models.py +534 -0
- optimizer.pt +3 -0
- pytorch_model.bin +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +15 -0
- trainer_state.json +506 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/workspace/Embedding/SimCSE/shenxiangyang_bert_3",
|
3 |
+
"architectures": [
|
4 |
+
"BertForCL"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"directionality": "bidi",
|
10 |
+
"eos_token_id": 2,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-12,
|
17 |
+
"max_position_embeddings": 512,
|
18 |
+
"model_type": "bert",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"output_past": true,
|
22 |
+
"pad_token_id": 0,
|
23 |
+
"pooler_fc_size": 768,
|
24 |
+
"pooler_num_attention_heads": 12,
|
25 |
+
"pooler_num_fc_layers": 3,
|
26 |
+
"pooler_size_per_head": 128,
|
27 |
+
"pooler_type": "first_token_transform",
|
28 |
+
"position_embedding_type": "absolute",
|
29 |
+
"torch_dtype": "float32",
|
30 |
+
"transformers_version": "4.27.1",
|
31 |
+
"type_vocab_size": 2,
|
32 |
+
"use_cache": true,
|
33 |
+
"vocab_size": 21128,
|
34 |
+
"auto_map": {
|
35 |
+
"AutoModel": "models.BertForCL"
|
36 |
+
}
|
37 |
+
}
|
models.py
ADDED
@@ -0,0 +1,534 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torch.distributed as dist
|
5 |
+
|
6 |
+
# from simcse.modeling_glm import GLMModel, GLMPreTrainedModel
|
7 |
+
|
8 |
+
# import simcse.readEmbeddings
|
9 |
+
# import simcse.mse_loss
|
10 |
+
|
11 |
+
import transformers
|
12 |
+
from transformers import RobertaTokenizer, AutoModel, PreTrainedModel
|
13 |
+
from transformers.models.roberta.modeling_roberta import RobertaPreTrainedModel, RobertaModel, RobertaLMHead
|
14 |
+
from transformers.models.bert.modeling_bert import BertPreTrainedModel, BertModel, BertLMPredictionHead
|
15 |
+
from transformers.activations import gelu
|
16 |
+
from transformers.file_utils import (
|
17 |
+
add_code_sample_docstrings,
|
18 |
+
add_start_docstrings,
|
19 |
+
add_start_docstrings_to_model_forward,
|
20 |
+
replace_return_docstrings,
|
21 |
+
)
|
22 |
+
from transformers.modeling_outputs import SequenceClassifierOutput, BaseModelOutputWithPoolingAndCrossAttentions
|
23 |
+
|
24 |
+
glm_model = None
|
25 |
+
|
26 |
+
def init_glm(path):
|
27 |
+
global glm_model
|
28 |
+
glm_model = AutoModel.from_pretrained(path, trust_remote_code=True).to("cuda:0")
|
29 |
+
for param in glm_model.parameters():
|
30 |
+
param.requires_grad = False
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
class MLPLayer(nn.Module):
|
35 |
+
"""
|
36 |
+
Head for getting sentence representations over RoBERTa/BERT's CLS representation.
|
37 |
+
"""
|
38 |
+
|
39 |
+
def __init__(self, config):
|
40 |
+
super().__init__()
|
41 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
42 |
+
# 1536
|
43 |
+
self.fc = nn.Linear(config.hidden_size, 1536)
|
44 |
+
self.activation = nn.Tanh()
|
45 |
+
|
46 |
+
def forward(self, features, **kwargs):
|
47 |
+
x = self.dense(features)
|
48 |
+
x = self.fc(x)
|
49 |
+
x = self.activation(x)
|
50 |
+
|
51 |
+
return x
|
52 |
+
|
53 |
+
class Similarity(nn.Module):
|
54 |
+
"""
|
55 |
+
Dot product or cosine similarity
|
56 |
+
"""
|
57 |
+
|
58 |
+
def __init__(self, temp):
|
59 |
+
super().__init__()
|
60 |
+
self.temp = temp
|
61 |
+
self.cos = nn.CosineSimilarity(dim=-1)
|
62 |
+
|
63 |
+
def forward(self, x, y):
|
64 |
+
return self.cos(x, y) / self.temp
|
65 |
+
|
66 |
+
|
67 |
+
class Pooler(nn.Module):
|
68 |
+
"""
|
69 |
+
Parameter-free poolers to get the sentence embedding
|
70 |
+
'cls': [CLS] representation with BERT/RoBERTa's MLP pooler.
|
71 |
+
'cls_before_pooler': [CLS] representation without the original MLP pooler.
|
72 |
+
'avg': average of the last layers' hidden states at each token.
|
73 |
+
'avg_top2': average of the last two layers.
|
74 |
+
'avg_first_last': average of the first and the last layers.
|
75 |
+
"""
|
76 |
+
|
77 |
+
def __init__(self, pooler_type):
|
78 |
+
super().__init__()
|
79 |
+
self.pooler_type = pooler_type
|
80 |
+
assert self.pooler_type in ["cls", "cls_before_pooler", "avg", "avg_top2",
|
81 |
+
"avg_first_last"], "unrecognized pooling type %s" % self.pooler_type
|
82 |
+
|
83 |
+
def forward(self, attention_mask, outputs):
|
84 |
+
last_hidden = outputs.last_hidden_state
|
85 |
+
# pooler_output = outputs.pooler_output
|
86 |
+
hidden_states = outputs.hidden_states
|
87 |
+
|
88 |
+
if self.pooler_type in ['cls_before_pooler', 'cls']:
|
89 |
+
return last_hidden[:, 0]
|
90 |
+
elif self.pooler_type == "avg":
|
91 |
+
return ((last_hidden * attention_mask.unsqueeze(-1)).sum(1) / attention_mask.sum(-1).unsqueeze(-1))
|
92 |
+
elif self.pooler_type == "avg_first_last":
|
93 |
+
first_hidden = hidden_states[1]
|
94 |
+
last_hidden = hidden_states[-1]
|
95 |
+
pooled_result = ((first_hidden + last_hidden) / 2.0 * attention_mask.unsqueeze(-1)).sum(
|
96 |
+
1) / attention_mask.sum(-1).unsqueeze(-1)
|
97 |
+
return pooled_result
|
98 |
+
elif self.pooler_type == "avg_top2":
|
99 |
+
second_last_hidden = hidden_states[-2]
|
100 |
+
last_hidden = hidden_states[-1]
|
101 |
+
pooled_result = ((last_hidden + second_last_hidden) / 2.0 * attention_mask.unsqueeze(-1)).sum(
|
102 |
+
1) / attention_mask.sum(-1).unsqueeze(-1)
|
103 |
+
return pooled_result
|
104 |
+
else:
|
105 |
+
raise NotImplementedError
|
106 |
+
|
107 |
+
|
108 |
+
def cl_init(cls, config):
|
109 |
+
"""
|
110 |
+
Contrastive learning class init function.
|
111 |
+
"""
|
112 |
+
cls.pooler_type = cls.model_args.pooler_type
|
113 |
+
cls.pooler = Pooler(cls.model_args.pooler_type)
|
114 |
+
if cls.model_args.pooler_type == "cls":
|
115 |
+
cls.mlp = MLPLayer(config)
|
116 |
+
cls.sim = Similarity(temp=cls.model_args.temp)
|
117 |
+
cls.init_weights()
|
118 |
+
|
119 |
+
|
120 |
+
def cl_forward(cls,
|
121 |
+
encoder,
|
122 |
+
input_ids=None,
|
123 |
+
attention_mask=None,
|
124 |
+
token_type_ids=None,
|
125 |
+
position_ids=None,
|
126 |
+
head_mask=None,
|
127 |
+
inputs_embeds=None,
|
128 |
+
labels=None,
|
129 |
+
output_attentions=None,
|
130 |
+
output_hidden_states=None,
|
131 |
+
return_dict=None,
|
132 |
+
mlm_input_ids=None,
|
133 |
+
mlm_labels=None,
|
134 |
+
):
|
135 |
+
return_dict = return_dict if return_dict is not None else cls.config.use_return_dict
|
136 |
+
ori_input_ids = input_ids
|
137 |
+
batch_size = input_ids.size(0)
|
138 |
+
# Number of sentences in one instance
|
139 |
+
# 2: pair instance; 3: pair instance with a hard negative
|
140 |
+
num_sent = input_ids.size(1)
|
141 |
+
|
142 |
+
mlm_outputs = None
|
143 |
+
# Flatten input for encoding
|
144 |
+
input_ids = input_ids.view((-1, input_ids.size(-1))) # (bs * num_sent, len)
|
145 |
+
attention_mask = attention_mask.view((-1, attention_mask.size(-1))) # (bs * num_sent len)
|
146 |
+
if token_type_ids is not None:
|
147 |
+
token_type_ids = token_type_ids.view((-1, token_type_ids.size(-1))) # (bs * num_sent, len)
|
148 |
+
|
149 |
+
if inputs_embeds is not None:
|
150 |
+
input_ids = None
|
151 |
+
|
152 |
+
# Get raw embeddings
|
153 |
+
outputs = encoder(
|
154 |
+
input_ids,
|
155 |
+
attention_mask=attention_mask,
|
156 |
+
token_type_ids=token_type_ids,
|
157 |
+
position_ids=position_ids,
|
158 |
+
head_mask=head_mask,
|
159 |
+
inputs_embeds=inputs_embeds,
|
160 |
+
output_attentions=output_attentions,
|
161 |
+
output_hidden_states=True if cls.model_args.pooler_type in ['avg_top2', 'avg_first_last'] else False,
|
162 |
+
return_dict=True,
|
163 |
+
)
|
164 |
+
|
165 |
+
# MLM auxiliary objective
|
166 |
+
if mlm_input_ids is not None:
|
167 |
+
mlm_input_ids = mlm_input_ids.view((-1, mlm_input_ids.size(-1)))
|
168 |
+
mlm_outputs = encoder(
|
169 |
+
mlm_input_ids,
|
170 |
+
attention_mask=attention_mask,
|
171 |
+
token_type_ids=token_type_ids,
|
172 |
+
position_ids=position_ids,
|
173 |
+
head_mask=head_mask,
|
174 |
+
inputs_embeds=inputs_embeds,
|
175 |
+
output_attentions=output_attentions,
|
176 |
+
output_hidden_states=True if cls.model_args.pooler_type in ['avg_top2', 'avg_first_last'] else False,
|
177 |
+
return_dict=True,
|
178 |
+
)
|
179 |
+
|
180 |
+
# Pooling
|
181 |
+
pooler_output = cls.pooler(attention_mask, outputs)
|
182 |
+
pooler_output = pooler_output.view((batch_size, num_sent, pooler_output.size(-1))) # (bs, num_sent, hidden)
|
183 |
+
# If using "cls", we add an extra MLP layer
|
184 |
+
# (same as BERT's original implementation) over the representation.
|
185 |
+
if cls.pooler_type == "cls":
|
186 |
+
# print("this pooler is cls and running mlp")
|
187 |
+
pooler_output = cls.mlp(pooler_output)
|
188 |
+
|
189 |
+
# Separate representation
|
190 |
+
z1, z2 = pooler_output[:, 0], pooler_output[:, 1]
|
191 |
+
|
192 |
+
# simcse.mse_loss.global_num += 8
|
193 |
+
# print(simcse.mse_loss.global_num)
|
194 |
+
tensor_left, tensor_right = simcse.mse_loss.giveMeBatchEmbeddings(simcse.mse_loss.global_num,
|
195 |
+
simcse.readEmbeddings.data)
|
196 |
+
simcse.mse_loss.global_num += 32
|
197 |
+
# print(F.mse_loss(z1,tensor_left))
|
198 |
+
# print(F.mse_loss(z2,tensor_right))
|
199 |
+
|
200 |
+
# print(tensor_left.size())
|
201 |
+
# print(tensor_right.size())
|
202 |
+
# print(len(pooler_output[:,]))
|
203 |
+
# print(len(z1))
|
204 |
+
# print(len(z2))
|
205 |
+
# print(len(z1[0]))
|
206 |
+
# print(len(z2[0]))
|
207 |
+
|
208 |
+
# print(F.mse_loss(z1[0], z2[0]))
|
209 |
+
|
210 |
+
# Hard negative
|
211 |
+
if num_sent == 3:
|
212 |
+
z3 = pooler_output[:, 2]
|
213 |
+
|
214 |
+
# Gather all embeddings if using distributed training
|
215 |
+
if dist.is_initialized() and cls.training:
|
216 |
+
# Gather hard negative
|
217 |
+
if num_sent >= 3:
|
218 |
+
z3_list = [torch.zeros_like(z3) for _ in range(dist.get_world_size())]
|
219 |
+
dist.all_gather(tensor_list=z3_list, tensor=z3.contiguous())
|
220 |
+
z3_list[dist.get_rank()] = z3
|
221 |
+
z3 = torch.cat(z3_list, 0)
|
222 |
+
|
223 |
+
# Dummy vectors for allgather
|
224 |
+
z1_list = [torch.zeros_like(z1) for _ in range(dist.get_world_size())]
|
225 |
+
z2_list = [torch.zeros_like(z2) for _ in range(dist.get_world_size())]
|
226 |
+
# Allgather
|
227 |
+
dist.all_gather(tensor_list=z1_list, tensor=z1.contiguous())
|
228 |
+
dist.all_gather(tensor_list=z2_list, tensor=z2.contiguous())
|
229 |
+
|
230 |
+
# Since allgather results do not have gradients, we replace the
|
231 |
+
# current process's corresponding embeddings with original tensors
|
232 |
+
z1_list[dist.get_rank()] = z1
|
233 |
+
z2_list[dist.get_rank()] = z2
|
234 |
+
# Get full batch embeddings: (bs x N, hidden)
|
235 |
+
z1 = torch.cat(z1_list, 0)
|
236 |
+
z2 = torch.cat(z2_list, 0)
|
237 |
+
|
238 |
+
ziang_loss = F.mse_loss(z1, tensor_left) + F.mse_loss(z2, tensor_right)
|
239 |
+
# print("\n MSE Loss is : ", ziang_loss)
|
240 |
+
|
241 |
+
softmax_row, softmax_col = simcse.mse_loss.giveMeMatrix(tensor_left, tensor_right)
|
242 |
+
softmax_row_model, softmax_col_model = simcse.mse_loss.giveMeMatrix(z1,z2)
|
243 |
+
|
244 |
+
ziang_labels = torch.tensor([i for i in range(32)], device='cuda:0')
|
245 |
+
|
246 |
+
"""
|
247 |
+
this is cross entropy loss
|
248 |
+
"""
|
249 |
+
row_loss = F.cross_entropy(softmax_row, ziang_labels)
|
250 |
+
col_loss = F.cross_entropy(softmax_col, ziang_labels)
|
251 |
+
softmax_loss = (row_loss + col_loss) / 2
|
252 |
+
|
253 |
+
"""
|
254 |
+
this is KL div loss
|
255 |
+
"""
|
256 |
+
KL_row_loss = F.kl_div(softmax_row_model.log(), softmax_row, reduction='batchmean')
|
257 |
+
KL_col_loss = F.kl_div(softmax_col_model.log(), softmax_col, reduction='batchmean')
|
258 |
+
KL_loss = (KL_row_loss + KL_col_loss) / 2
|
259 |
+
|
260 |
+
ziang_loss = KL_loss + ziang_loss + softmax_loss
|
261 |
+
# ziang_loss = softmax_loss + ziang_loss
|
262 |
+
|
263 |
+
# ziang_loss = F.mse_loss(
|
264 |
+
# torch.nn.functional.cosine_similarity(tensor_left, tensor_right),
|
265 |
+
# torch.nn.functional.cosine_similarity(z1,z2)
|
266 |
+
# )
|
267 |
+
# ziang_loss /= 0.5
|
268 |
+
# print("\n Softmax Loss is : ", softmax_loss)
|
269 |
+
# print("\n Openai Cos Similarity between two paragraph: \n", torch.nn.functional.cosine_similarity(tensor_left, tensor_right))
|
270 |
+
# print("\nCos Similarity between two paragraph: \n", torch.nn.functional.cosine_similarity(z1, z2))
|
271 |
+
# print("\n My total loss currently: ", ziang_loss)
|
272 |
+
|
273 |
+
# print(z1.size())
|
274 |
+
# print(z2.size())
|
275 |
+
|
276 |
+
cos_sim = cls.sim(z1.unsqueeze(1), z2.unsqueeze(0))
|
277 |
+
|
278 |
+
# Hard negative
|
279 |
+
if num_sent >= 3:
|
280 |
+
z1_z3_cos = cls.sim(z1.unsqueeze(1), z3.unsqueeze(0))
|
281 |
+
cos_sim = torch.cat([cos_sim, z1_z3_cos], 1)
|
282 |
+
|
283 |
+
labels = torch.arange(cos_sim.size(0)).long().to(cls.device)
|
284 |
+
loss_fct = nn.CrossEntropyLoss()
|
285 |
+
|
286 |
+
# Calculate loss with hard negatives
|
287 |
+
if num_sent == 3:
|
288 |
+
# Note that weights are actually logits of weights
|
289 |
+
z3_weight = cls.model_args.hard_negative_weight
|
290 |
+
weights = torch.tensor(
|
291 |
+
[[0.0] * (cos_sim.size(-1) - z1_z3_cos.size(-1)) + [0.0] * i + [z3_weight] + [0.0] * (
|
292 |
+
z1_z3_cos.size(-1) - i - 1) for i in range(z1_z3_cos.size(-1))]
|
293 |
+
).to(cls.device)
|
294 |
+
cos_sim = cos_sim + weights
|
295 |
+
|
296 |
+
loss = loss_fct(cos_sim, labels)
|
297 |
+
|
298 |
+
# Calculate loss for MLM
|
299 |
+
if mlm_outputs is not None and mlm_labels is not None:
|
300 |
+
mlm_labels = mlm_labels.view(-1, mlm_labels.size(-1))
|
301 |
+
prediction_scores = cls.lm_head(mlm_outputs.last_hidden_state)
|
302 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, cls.config.vocab_size), mlm_labels.view(-1))
|
303 |
+
loss = loss + cls.model_args.mlm_weight * masked_lm_loss
|
304 |
+
|
305 |
+
if not return_dict:
|
306 |
+
output = (cos_sim,) + outputs[2:]
|
307 |
+
return ((loss,) + output) if loss is not None else output
|
308 |
+
|
309 |
+
# print("original " , loss)
|
310 |
+
|
311 |
+
return SequenceClassifierOutput(
|
312 |
+
# loss=loss,
|
313 |
+
loss=ziang_loss,
|
314 |
+
logits=cos_sim,
|
315 |
+
hidden_states=outputs.hidden_states,
|
316 |
+
# attentions=outputs.attentions,
|
317 |
+
)
|
318 |
+
|
319 |
+
|
320 |
+
def sentemb_forward(
|
321 |
+
cls,
|
322 |
+
encoder,
|
323 |
+
input_ids=None,
|
324 |
+
attention_mask=None,
|
325 |
+
token_type_ids=None,
|
326 |
+
position_ids=None,
|
327 |
+
head_mask=None,
|
328 |
+
inputs_embeds=None,
|
329 |
+
labels=None,
|
330 |
+
output_attentions=None,
|
331 |
+
output_hidden_states=None,
|
332 |
+
return_dict=None,
|
333 |
+
):
|
334 |
+
return_dict = return_dict if return_dict is not None else cls.config.use_return_dict
|
335 |
+
|
336 |
+
if inputs_embeds is not None:
|
337 |
+
input_ids = None
|
338 |
+
|
339 |
+
outputs = encoder(
|
340 |
+
input_ids,
|
341 |
+
attention_mask=attention_mask,
|
342 |
+
token_type_ids=token_type_ids,
|
343 |
+
position_ids=position_ids,
|
344 |
+
head_mask=head_mask,
|
345 |
+
inputs_embeds=inputs_embeds,
|
346 |
+
output_attentions=output_attentions,
|
347 |
+
output_hidden_states=True if cls.pooler_type in ['avg_top2', 'avg_first_last'] else False,
|
348 |
+
return_dict=True,
|
349 |
+
)
|
350 |
+
|
351 |
+
pooler_output = cls.pooler(attention_mask, outputs)
|
352 |
+
if cls.pooler_type == "cls" and not cls.model_args.mlp_only_train:
|
353 |
+
pooler_output = cls.mlp(pooler_output)
|
354 |
+
|
355 |
+
if not return_dict:
|
356 |
+
return (outputs[0], pooler_output) + outputs[2:]
|
357 |
+
|
358 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
359 |
+
pooler_output=pooler_output,
|
360 |
+
last_hidden_state=outputs.last_hidden_state,
|
361 |
+
hidden_states=outputs.hidden_states,
|
362 |
+
)
|
363 |
+
|
364 |
+
|
365 |
+
class BertForCL(BertPreTrainedModel):
|
366 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
367 |
+
|
368 |
+
def __init__(self, config, *model_args, **model_kargs):
|
369 |
+
super().__init__(config)
|
370 |
+
self.model_args = model_kargs["model_args"]
|
371 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
372 |
+
|
373 |
+
if self.model_args.do_mlm:
|
374 |
+
self.lm_head = BertLMPredictionHead(config)
|
375 |
+
|
376 |
+
if self.model_args.init_embeddings_model:
|
377 |
+
if "glm" in self.model_args.init_embeddings_model:
|
378 |
+
init_glm(self.model_args.init_embeddings_model)
|
379 |
+
self.fc = nn.Linear(glm_model.config.hidden_size, config.hidden_size)
|
380 |
+
else:
|
381 |
+
raise NotImplementedError
|
382 |
+
|
383 |
+
cl_init(self, config)
|
384 |
+
|
385 |
+
def forward(self,
|
386 |
+
input_ids=None,
|
387 |
+
attention_mask=None,
|
388 |
+
token_type_ids=None,
|
389 |
+
position_ids=None,
|
390 |
+
head_mask=None,
|
391 |
+
inputs_embeds=None,
|
392 |
+
labels=None,
|
393 |
+
output_attentions=None,
|
394 |
+
output_hidden_states=None,
|
395 |
+
return_dict=None,
|
396 |
+
sent_emb=False,
|
397 |
+
mlm_input_ids=None,
|
398 |
+
mlm_labels=None,
|
399 |
+
):
|
400 |
+
if self.model_args.init_embeddings_model:
|
401 |
+
input_ids_for_glm = input_ids.view((-1, input_ids.size(-1))) # (bs * num_sent, len)
|
402 |
+
attention_mask_for_glm = attention_mask.view((-1, attention_mask.size(-1))) # (bs * num_sent len)
|
403 |
+
if token_type_ids is not None:
|
404 |
+
token_type_ids_for_glm = token_type_ids.view((-1, token_type_ids.size(-1))) # (bs * num_sent, len)
|
405 |
+
|
406 |
+
outputs_from_glm = glm_model(input_ids_for_glm,
|
407 |
+
attention_mask=attention_mask_for_glm,
|
408 |
+
token_type_ids=token_type_ids_for_glm,
|
409 |
+
position_ids=position_ids,
|
410 |
+
head_mask=head_mask,
|
411 |
+
inputs_embeds=inputs_embeds,
|
412 |
+
labels=labels,
|
413 |
+
output_attentions=output_attentions,
|
414 |
+
output_hidden_states=output_hidden_states,
|
415 |
+
return_dict=return_dict,
|
416 |
+
)
|
417 |
+
|
418 |
+
inputs_embeds = self.fc(outputs_from_glm.last_hidden_state)
|
419 |
+
|
420 |
+
if sent_emb:
|
421 |
+
return sentemb_forward(self, self.bert,
|
422 |
+
input_ids=input_ids,
|
423 |
+
attention_mask=attention_mask,
|
424 |
+
token_type_ids=token_type_ids,
|
425 |
+
position_ids=position_ids,
|
426 |
+
head_mask=head_mask,
|
427 |
+
inputs_embeds=inputs_embeds,
|
428 |
+
labels=labels,
|
429 |
+
output_attentions=output_attentions,
|
430 |
+
output_hidden_states=output_hidden_states,
|
431 |
+
return_dict=return_dict,
|
432 |
+
)
|
433 |
+
else:
|
434 |
+
return cl_forward(self, self.bert,
|
435 |
+
input_ids=input_ids,
|
436 |
+
attention_mask=attention_mask,
|
437 |
+
token_type_ids=token_type_ids,
|
438 |
+
position_ids=position_ids,
|
439 |
+
head_mask=head_mask,
|
440 |
+
inputs_embeds=inputs_embeds,
|
441 |
+
labels=labels,
|
442 |
+
output_attentions=output_attentions,
|
443 |
+
output_hidden_states=output_hidden_states,
|
444 |
+
return_dict=return_dict,
|
445 |
+
mlm_input_ids=mlm_input_ids,
|
446 |
+
mlm_labels=mlm_labels,
|
447 |
+
)
|
448 |
+
|
449 |
+
|
450 |
+
class RobertaForCL(RobertaPreTrainedModel):
|
451 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
452 |
+
|
453 |
+
def __init__(self, config, *model_args, **model_kargs):
|
454 |
+
super().__init__(config)
|
455 |
+
self.model_args = model_kargs["model_args"]
|
456 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
457 |
+
|
458 |
+
if self.model_args.do_mlm:
|
459 |
+
self.lm_head = RobertaLMHead(config)
|
460 |
+
|
461 |
+
if self.model_args.init_embeddings_model:
|
462 |
+
if "glm" in self.model_args.init_embeddings_model:
|
463 |
+
init_glm(self.model_args.init_embeddings_model)
|
464 |
+
self.fc = nn.Linear(glm_model.config.hidden_size, config.hidden_size)
|
465 |
+
else:
|
466 |
+
raise NotImplementedError
|
467 |
+
|
468 |
+
cl_init(self, config)
|
469 |
+
|
470 |
+
def forward(self,
|
471 |
+
input_ids=None,
|
472 |
+
attention_mask=None,
|
473 |
+
token_type_ids=None,
|
474 |
+
position_ids=None,
|
475 |
+
head_mask=None,
|
476 |
+
inputs_embeds=None,
|
477 |
+
labels=None,
|
478 |
+
output_attentions=None,
|
479 |
+
output_hidden_states=None,
|
480 |
+
return_dict=None,
|
481 |
+
sent_emb=False,
|
482 |
+
mlm_input_ids=None,
|
483 |
+
mlm_labels=None,
|
484 |
+
):
|
485 |
+
|
486 |
+
if self.model_args.init_embeddings_model and not sent_emb:
|
487 |
+
input_ids_for_glm = input_ids.view((-1, input_ids.size(-1))) # (bs * num_sent, len)
|
488 |
+
attention_mask_for_glm = attention_mask.view((-1, attention_mask.size(-1))) # (bs * num_sent len)
|
489 |
+
if token_type_ids is not None:
|
490 |
+
token_type_ids_for_glm = token_type_ids.view((-1, token_type_ids.size(-1))) # (bs * num_sent, len)
|
491 |
+
|
492 |
+
outputs_from_glm = glm_model(input_ids_for_glm,
|
493 |
+
attention_mask=attention_mask_for_glm,
|
494 |
+
token_type_ids=token_type_ids_for_glm,
|
495 |
+
position_ids=position_ids,
|
496 |
+
head_mask=head_mask,
|
497 |
+
inputs_embeds=inputs_embeds,
|
498 |
+
labels=labels,
|
499 |
+
output_attentions=output_attentions,
|
500 |
+
output_hidden_states=output_hidden_states,
|
501 |
+
return_dict=return_dict,
|
502 |
+
)
|
503 |
+
|
504 |
+
inputs_embeds = self.fc(outputs_from_glm.last_hidden_state)
|
505 |
+
|
506 |
+
if sent_emb:
|
507 |
+
return sentemb_forward(self, self.roberta,
|
508 |
+
input_ids=input_ids,
|
509 |
+
attention_mask=attention_mask,
|
510 |
+
token_type_ids=token_type_ids,
|
511 |
+
position_ids=position_ids,
|
512 |
+
head_mask=head_mask,
|
513 |
+
inputs_embeds=inputs_embeds,
|
514 |
+
labels=labels,
|
515 |
+
output_attentions=output_attentions,
|
516 |
+
output_hidden_states=output_hidden_states,
|
517 |
+
return_dict=return_dict,
|
518 |
+
)
|
519 |
+
else:
|
520 |
+
return cl_forward(self, self.roberta,
|
521 |
+
input_ids=input_ids,
|
522 |
+
attention_mask=attention_mask,
|
523 |
+
token_type_ids=token_type_ids,
|
524 |
+
position_ids=position_ids,
|
525 |
+
head_mask=head_mask,
|
526 |
+
inputs_embeds=inputs_embeds,
|
527 |
+
labels=labels,
|
528 |
+
output_attentions=output_attentions,
|
529 |
+
output_hidden_states=output_hidden_states,
|
530 |
+
return_dict=return_dict,
|
531 |
+
mlm_input_ids=mlm_input_ids,
|
532 |
+
mlm_labels=mlm_labels,
|
533 |
+
)
|
534 |
+
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e01f5b79c18202de4a4eeb6f5ada1401c2db48d1450487b9ffdf040a704c8d7b
|
3 |
+
size 827708549
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0a82772934eb24055fc3af28176176f17c78180f6c72309bc05177ef4231be7
|
3 |
+
size 413868149
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f65d514eaec6c76c6ec10a1783c783b393dbd61b5def51de7a17365db021f302
|
3 |
+
size 627
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"do_basic_tokenize": true,
|
4 |
+
"do_lower_case": true,
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"model_max_length": 1000000000000000019884624838656,
|
7 |
+
"never_split": null,
|
8 |
+
"pad_token": "[PAD]",
|
9 |
+
"sep_token": "[SEP]",
|
10 |
+
"special_tokens_map_file": "/home/chenweifeng/.cache/huggingface/hub/models--hfl--chinese-roberta-wwm-ext/snapshots/5c58d0b8ec1d9014354d691c538661bf00bfdb44/special_tokens_map.json",
|
11 |
+
"strip_accents": null,
|
12 |
+
"tokenize_chinese_chars": true,
|
13 |
+
"tokenizer_class": "BertTokenizer",
|
14 |
+
"unk_token": "[UNK]"
|
15 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.9549795361527967,
|
5 |
+
"global_step": 7000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.07,
|
12 |
+
"learning_rate": 2.795361527967258e-05,
|
13 |
+
"loss": 3.4231,
|
14 |
+
"step": 500
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.14,
|
18 |
+
"learning_rate": 2.5907230559345156e-05,
|
19 |
+
"loss": 3.423,
|
20 |
+
"step": 1000
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.14,
|
24 |
+
"eval_stsb_spearman": 0.4829721958511661,
|
25 |
+
"step": 1000
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"epoch": 0.2,
|
29 |
+
"learning_rate": 2.386084583901774e-05,
|
30 |
+
"loss": 3.4229,
|
31 |
+
"step": 1500
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.27,
|
35 |
+
"learning_rate": 2.1814461118690315e-05,
|
36 |
+
"loss": 3.4229,
|
37 |
+
"step": 2000
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.27,
|
41 |
+
"eval_stsb_spearman": 0.5840087248870882,
|
42 |
+
"step": 2000
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"epoch": 0.34,
|
46 |
+
"learning_rate": 1.9768076398362894e-05,
|
47 |
+
"loss": 3.4229,
|
48 |
+
"step": 2500
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"epoch": 0.41,
|
52 |
+
"learning_rate": 1.772169167803547e-05,
|
53 |
+
"loss": 3.4229,
|
54 |
+
"step": 3000
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.41,
|
58 |
+
"eval_stsb_spearman": 0.6250461828473922,
|
59 |
+
"step": 3000
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.48,
|
63 |
+
"learning_rate": 1.567530695770805e-05,
|
64 |
+
"loss": 3.4229,
|
65 |
+
"step": 3500
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.55,
|
69 |
+
"learning_rate": 1.3628922237380627e-05,
|
70 |
+
"loss": 3.4229,
|
71 |
+
"step": 4000
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"epoch": 0.55,
|
75 |
+
"eval_stsb_spearman": 0.656661075878988,
|
76 |
+
"step": 4000
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.61,
|
80 |
+
"learning_rate": 1.1582537517053206e-05,
|
81 |
+
"loss": 3.4229,
|
82 |
+
"step": 4500
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"epoch": 0.68,
|
86 |
+
"learning_rate": 9.536152796725784e-06,
|
87 |
+
"loss": 3.4228,
|
88 |
+
"step": 5000
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"epoch": 0.68,
|
92 |
+
"eval_stsb_spearman": 0.6699952089868008,
|
93 |
+
"step": 5000
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.75,
|
97 |
+
"learning_rate": 7.489768076398363e-06,
|
98 |
+
"loss": 3.4229,
|
99 |
+
"step": 5500
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.82,
|
103 |
+
"learning_rate": 5.443383356070941e-06,
|
104 |
+
"loss": 3.4228,
|
105 |
+
"step": 6000
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.82,
|
109 |
+
"eval_stsb_spearman": 0.6815928788452451,
|
110 |
+
"step": 6000
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.89,
|
114 |
+
"learning_rate": 3.39699863574352e-06,
|
115 |
+
"loss": 3.4228,
|
116 |
+
"step": 6500
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.95,
|
120 |
+
"learning_rate": 1.3506139154160984e-06,
|
121 |
+
"loss": 3.4229,
|
122 |
+
"step": 7000
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.95,
|
126 |
+
"eval_stsb_spearman": 0.6869918326406103,
|
127 |
+
"step": 7000
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"epoch": 0.07,
|
131 |
+
"learning_rate": 0.0,
|
132 |
+
"loss": 0.0002,
|
133 |
+
"step": 500
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"epoch": 0.14,
|
137 |
+
"learning_rate": 0.0,
|
138 |
+
"loss": 0.0002,
|
139 |
+
"step": 1000
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"epoch": 0.14,
|
143 |
+
"eval_stsb_spearman": 0.6832701515366976,
|
144 |
+
"step": 1000
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 0.2,
|
148 |
+
"learning_rate": 0.0,
|
149 |
+
"loss": 0.0002,
|
150 |
+
"step": 1500
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.27,
|
154 |
+
"learning_rate": 0.0,
|
155 |
+
"loss": 0.0002,
|
156 |
+
"step": 2000
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.27,
|
160 |
+
"eval_stsb_spearman": 0.6832701515366976,
|
161 |
+
"step": 2000
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 0.34,
|
165 |
+
"learning_rate": 0.0,
|
166 |
+
"loss": 0.0002,
|
167 |
+
"step": 2500
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"epoch": 0.41,
|
171 |
+
"learning_rate": 0.0,
|
172 |
+
"loss": 0.0002,
|
173 |
+
"step": 3000
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 0.41,
|
177 |
+
"eval_stsb_spearman": 0.6832701515366976,
|
178 |
+
"step": 3000
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.48,
|
182 |
+
"learning_rate": 0.0,
|
183 |
+
"loss": 0.0002,
|
184 |
+
"step": 3500
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.55,
|
188 |
+
"learning_rate": 0.0,
|
189 |
+
"loss": 0.0002,
|
190 |
+
"step": 4000
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"epoch": 0.55,
|
194 |
+
"eval_stsb_spearman": 0.6832701515366976,
|
195 |
+
"step": 4000
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.61,
|
199 |
+
"learning_rate": 0.0,
|
200 |
+
"loss": 0.0002,
|
201 |
+
"step": 4500
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.68,
|
205 |
+
"learning_rate": 0.0,
|
206 |
+
"loss": 0.0002,
|
207 |
+
"step": 5000
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.68,
|
211 |
+
"eval_stsb_spearman": 0.6832701515366976,
|
212 |
+
"step": 5000
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.75,
|
216 |
+
"learning_rate": 0.0,
|
217 |
+
"loss": 0.0002,
|
218 |
+
"step": 5500
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.82,
|
222 |
+
"learning_rate": 0.0,
|
223 |
+
"loss": 0.0002,
|
224 |
+
"step": 6000
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.82,
|
228 |
+
"eval_stsb_spearman": 0.6832701515366976,
|
229 |
+
"step": 6000
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"epoch": 0.89,
|
233 |
+
"learning_rate": 0.0,
|
234 |
+
"loss": 0.0002,
|
235 |
+
"step": 6500
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"epoch": 0.95,
|
239 |
+
"learning_rate": 0.0,
|
240 |
+
"loss": 0.0002,
|
241 |
+
"step": 7000
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.95,
|
245 |
+
"eval_stsb_spearman": 0.6832701515366976,
|
246 |
+
"step": 7000
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"epoch": 1.0,
|
250 |
+
"step": 7330,
|
251 |
+
"total_flos": 0,
|
252 |
+
"train_runtime": 3008.4826,
|
253 |
+
"train_samples_per_second": 2.436
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"epoch": 0.07,
|
257 |
+
"learning_rate": 2.795361527967258e-05,
|
258 |
+
"loss": 0.0002,
|
259 |
+
"step": 500
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"epoch": 0.14,
|
263 |
+
"learning_rate": 2.5907230559345156e-05,
|
264 |
+
"loss": 0.0002,
|
265 |
+
"step": 1000
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"epoch": 0.14,
|
269 |
+
"eval_stsb_spearman": 0.6647397049127042,
|
270 |
+
"step": 1000
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"epoch": 0.2,
|
274 |
+
"learning_rate": 2.386084583901774e-05,
|
275 |
+
"loss": 0.0002,
|
276 |
+
"step": 1500
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.27,
|
280 |
+
"learning_rate": 2.1814461118690315e-05,
|
281 |
+
"loss": 0.0002,
|
282 |
+
"step": 2000
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.27,
|
286 |
+
"eval_stsb_spearman": 0.6705695143163508,
|
287 |
+
"step": 2000
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"epoch": 0.34,
|
291 |
+
"learning_rate": 1.9768076398362894e-05,
|
292 |
+
"loss": 0.0002,
|
293 |
+
"step": 2500
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"epoch": 0.41,
|
297 |
+
"learning_rate": 1.772169167803547e-05,
|
298 |
+
"loss": 0.0002,
|
299 |
+
"step": 3000
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 0.41,
|
303 |
+
"eval_stsb_spearman": 0.6834165899504511,
|
304 |
+
"step": 3000
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.48,
|
308 |
+
"learning_rate": 1.567530695770805e-05,
|
309 |
+
"loss": 0.0002,
|
310 |
+
"step": 3500
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.55,
|
314 |
+
"learning_rate": 1.3628922237380627e-05,
|
315 |
+
"loss": 0.0002,
|
316 |
+
"step": 4000
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 0.55,
|
320 |
+
"eval_stsb_spearman": 0.6889523167904467,
|
321 |
+
"step": 4000
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.61,
|
325 |
+
"learning_rate": 1.1582537517053206e-05,
|
326 |
+
"loss": 0.0002,
|
327 |
+
"step": 4500
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.68,
|
331 |
+
"learning_rate": 9.536152796725784e-06,
|
332 |
+
"loss": 0.0002,
|
333 |
+
"step": 5000
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.68,
|
337 |
+
"eval_stsb_spearman": 0.6907657748709582,
|
338 |
+
"step": 5000
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.75,
|
342 |
+
"learning_rate": 7.489768076398363e-06,
|
343 |
+
"loss": 0.0002,
|
344 |
+
"step": 5500
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 0.82,
|
348 |
+
"learning_rate": 5.443383356070941e-06,
|
349 |
+
"loss": 0.0002,
|
350 |
+
"step": 6000
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 0.82,
|
354 |
+
"eval_stsb_spearman": 0.6844441359759208,
|
355 |
+
"step": 6000
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"epoch": 0.89,
|
359 |
+
"learning_rate": 3.39699863574352e-06,
|
360 |
+
"loss": 0.0002,
|
361 |
+
"step": 6500
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.95,
|
365 |
+
"learning_rate": 1.3506139154160984e-06,
|
366 |
+
"loss": 0.0002,
|
367 |
+
"step": 7000
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.95,
|
371 |
+
"eval_stsb_spearman": 0.6838872101024212,
|
372 |
+
"step": 7000
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"epoch": 1.0,
|
376 |
+
"step": 7330,
|
377 |
+
"total_flos": 0,
|
378 |
+
"train_runtime": 3006.5028,
|
379 |
+
"train_samples_per_second": 2.438
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"epoch": 0.07,
|
383 |
+
"learning_rate": 2.795361527967258e-05,
|
384 |
+
"loss": 3.4229,
|
385 |
+
"step": 500
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"epoch": 0.14,
|
389 |
+
"learning_rate": 2.5907230559345156e-05,
|
390 |
+
"loss": 3.4229,
|
391 |
+
"step": 1000
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 0.14,
|
395 |
+
"eval_stsb_spearman": 0.6971006163293475,
|
396 |
+
"step": 1000
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 0.2,
|
400 |
+
"learning_rate": 2.386084583901774e-05,
|
401 |
+
"loss": 3.4228,
|
402 |
+
"step": 1500
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.27,
|
406 |
+
"learning_rate": 2.1814461118690315e-05,
|
407 |
+
"loss": 3.4229,
|
408 |
+
"step": 2000
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.27,
|
412 |
+
"eval_stsb_spearman": 0.7098151136325446,
|
413 |
+
"step": 2000
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 0.34,
|
417 |
+
"learning_rate": 1.9768076398362894e-05,
|
418 |
+
"loss": 3.4229,
|
419 |
+
"step": 2500
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 0.41,
|
423 |
+
"learning_rate": 1.772169167803547e-05,
|
424 |
+
"loss": 3.4228,
|
425 |
+
"step": 3000
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.41,
|
429 |
+
"eval_stsb_spearman": 0.7175803233471086,
|
430 |
+
"step": 3000
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.48,
|
434 |
+
"learning_rate": 1.567530695770805e-05,
|
435 |
+
"loss": 3.4228,
|
436 |
+
"step": 3500
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.55,
|
440 |
+
"learning_rate": 1.3628922237380627e-05,
|
441 |
+
"loss": 3.4229,
|
442 |
+
"step": 4000
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"epoch": 0.55,
|
446 |
+
"eval_stsb_spearman": 0.7188510448496929,
|
447 |
+
"step": 4000
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.61,
|
451 |
+
"learning_rate": 1.1582537517053206e-05,
|
452 |
+
"loss": 3.4229,
|
453 |
+
"step": 4500
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.68,
|
457 |
+
"learning_rate": 9.536152796725784e-06,
|
458 |
+
"loss": 3.4228,
|
459 |
+
"step": 5000
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.68,
|
463 |
+
"eval_stsb_spearman": 0.71954530730918,
|
464 |
+
"step": 5000
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.75,
|
468 |
+
"learning_rate": 7.489768076398363e-06,
|
469 |
+
"loss": 3.4229,
|
470 |
+
"step": 5500
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 0.82,
|
474 |
+
"learning_rate": 5.443383356070941e-06,
|
475 |
+
"loss": 3.4228,
|
476 |
+
"step": 6000
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 0.82,
|
480 |
+
"eval_stsb_spearman": 0.715340103967707,
|
481 |
+
"step": 6000
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 0.89,
|
485 |
+
"learning_rate": 3.39699863574352e-06,
|
486 |
+
"loss": 3.4228,
|
487 |
+
"step": 6500
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"epoch": 0.95,
|
491 |
+
"learning_rate": 1.3506139154160984e-06,
|
492 |
+
"loss": 3.4229,
|
493 |
+
"step": 7000
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.95,
|
497 |
+
"eval_stsb_spearman": 0.7149024415170762,
|
498 |
+
"step": 7000
|
499 |
+
}
|
500 |
+
],
|
501 |
+
"max_steps": 7330,
|
502 |
+
"num_train_epochs": 1,
|
503 |
+
"total_flos": 0,
|
504 |
+
"trial_name": null,
|
505 |
+
"trial_params": null
|
506 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82ef62c98bbc42a0ce12883124231b698271139d95beae58f38eff35ab2ba06f
|
3 |
+
size 3643
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|