Upload LunarLander trained
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +30 -30
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +2 -2
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 279.92 +/- 17.62
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1d769f2ef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1d769f2f80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1d769f3010>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1d769f30a0>", "_build": "<function ActorCriticPolicy._build at 0x7f1d769f3130>", "forward": "<function ActorCriticPolicy.forward at 0x7f1d769f31c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1d769f3250>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1d769f32e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1d769f3370>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1d769f3400>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1d769f3490>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1d769f3520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1d769f5580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3022848, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688623239959559905, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABmdjxAArI/ZTT9Pm/Bpr7TYTe8EoUBvQAAAAAAAAAAwGuQvY/lCzsdKIQ+TBKJvobKXj3yhhi9AAAAAAAAgD+AeiI9kHvkPhYw1zwkqvC+WsLGPGYA37oAAAAAAAAAADNR9rzlgRc+FYuQPL0sr76Opye9ah/QuwAAAAAAAAAAM0MaO8MdMLqqco88xodwMgU3H7tNV/0zAACAPwAAgD+aw6W84ZyNuopsDrWSQAuwBXqcOvU1YzQAAIA/AACAP0b2L77Ejzw+5ooIPnE6tL4TBma+ENHRPAAAAAAAAAAAMJhWvhnHvT6uAV0+T/7EvldLEr7sJCA+AAAAAAAAAAAAITM+z+oBPx7Kwr2J0gK/L4VDPs00hb4AAAAAAAAAALOnrT0UvNK67oJZPpwQCr0HKKS9QqWDPgAAgD8AAAAAAMrBPQcJnj4wMBS/wN/JvkMyK757R02+AAAAAAAAAABzwIa9e2iYusZC5j3GBrE1H3/vOqLWoDQAAIA/AAAAAKZvgD2O5So/4DnlvUDKEb+5yrA9f8mzvQAAAAAAAAAAmibAvArfELuQ3Zs9TQYJPUUVQbzLquc9AACAPwAAgD+z8DK9rYyTP/r6XL70Kzm/cjg5veJzfr0AAAAAAAAAAGZ+Y7sp7FG6crPYNDNhW65YA+66M6cbtAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKfJK8L8aaMAWyUS82MAXSUR0DClBiYiPhidX2UKGgGR0Bx6zu8brC4aAdL22gIR0DClCmgg5imdX2UKGgGR0BwUCqS5iEyaAdLumgIR0DClCp1ie/YdX2UKGgGR0BzPF8pkPMCaAdLxGgIR0DClDnxMFlkdX2UKGgGR0BxfCUA1ejVaAdL7WgIR0DClD9+I/JOdX2UKGgGR0BWG4Ju2qkuaAdLcWgIR0DClFell9SddX2UKGgGR0Bx1umgrYoRaAdNbwFoCEdAwpRa+3YthHV9lChoBkdAb6U9Net0WGgHS8toCEdAwpRhPnjhk3V9lChoBkdActmBRAKOUGgHS81oCEdAwpRmq94/vHV9lChoBkdAcSd5ckdFOWgHS7BoCEdAwpR2dSVGC3V9lChoBkdAcDbW7e2uxWgHS9BoCEdAwpR4a5wwTXV9lChoBkdAcYoByCFsYWgHS85oCEdAwpR6hQm/nHV9lChoBkdAcL8nlXA/LWgHS+FoCEdAwpSEblRxcXV9lChoBkdAcjo85S3somgHS7xoCEdAwpSFUWl/IHV9lChoBkdAcIewG4ZuRGgHS8FoCEdAwpSLQLNOd3V9lChoBkdAcTexA0Kqn2gHS8NoCEdAwpSqTzundnV9lChoBkdAcObTx5LRKGgHS9ZoCEdAwpSx0btJF3V9lChoBkdAcYwxsEaESWgHS71oCEdAwpS1Y8uBc3V9lChoBkdAcuFiZv1lG2gHS6toCEdAwpS6nLq2SnV9lChoBkdAcyALRa5f+mgHS9ZoCEdAwpTGzTnaFnV9lChoBkdAcaxNQCSzPmgHS8toCEdAwpTMh37k4nV9lChoBkdAcHwDvE0iyWgHS71oCEdAwpTck690zXV9lChoBkdAcLp+5OJtSGgHS8JoCEdAwpUDHZK3/nV9lChoBkdAcXWU7jkuH2gHS+RoCEdAwpUL8Lron3V9lChoBkdAcQm/axoqTmgHS89oCEdAwpUNDcdo4HV9lChoBkdAcp1gbIcR2GgHS81oCEdAwpUP5JsfrHV9lChoBkdAcEiuIAOrhmgHS7VoCEdAwpURdHDrJXV9lChoBkdActt0Syt3fWgHS/NoCEdAwpUSFyq+8HV9lChoBkdAc07EpiI+GGgHS9loCEdAwpUjJeVs13V9lChoBkdAbr8ZR8+iamgHS+loCEdAwpUwWBSUDHV9lChoBkdAchUf16E8JWgHS7doCEdAwpU61v2oN3V9lChoBkdAcsKQgs9SuWgHS9BoCEdAwpVGQ04zanV9lChoBkdAcs/U9IPK+2gHTUMBaAhHQMKVRjkdWAB1fZQoaAZHQHD3f6fra/RoB0vJaAhHQMKVS/7rLQp1fZQoaAZHQHDQJpaiblRoB0u1aAhHQMKVTxTbWVh1fZQoaAZHQG4RdSde6ZpoB0vKaAhHQMKVUV4xDb91fZQoaAZHQHCQrel9BrxoB0vcaAhHQMKVfna37UJ1fZQoaAZHQHNQGiHqNZNoB0v0aAhHQMKVf4ku6Et1fZQoaAZHQHD9fYe1a4doB0u/aAhHQMKVjxKpT/B1fZQoaAZHQHIejuBtk4FoB0vIaAhHQMKVnB2fTTh1fZQoaAZHQHNFuYQarFRoB0vKaAhHQMKVoX/5tWN1fZQoaAZHQHKfhZEDyOJoB0vMaAhHQMKVpFeF+NN1fZQoaAZHQHEogeii7CloB0u6aAhHQMKVtsyJsO51fZQoaAZHQHCOEpmVZ9xoB0vuaAhHQMKVvwt8NQV1fZQoaAZHQHIbJlar3kBoB0v1aAhHQMKVv9onKGN1fZQoaAZHQHHRVYdQwbloB0u7aAhHQMKVwwWWQfZ1fZQoaAZHQHKRXEMspXpoB0u+aAhHQMKVz0dzXBh1fZQoaAZHQHNaVirksBhoB0v1aAhHQMKV1PpY9xJ1fZQoaAZHQG7Sxu0kWyloB0vMaAhHQMKV2OBDohZ1fZQoaAZHQHIYf/NqxkdoB0vEaAhHQMKV2MvIwM91fZQoaAZHQHE5cdYGMXJoB0vxaAhHQMKV/uSGJvZ1fZQoaAZHQHC8yyhSLqFoB0u1aAhHQMKWFIsiB5J1fZQoaAZHQHG4ZPdl/YtoB0veaAhHQMKWJNWdVed1fZQoaAZHQHOhxMi8nNRoB0vhaAhHQMKWKFgc94h1fZQoaAZHQG91dJrcj7hoB0u4aAhHQMKWK9ic5Kh1fZQoaAZHQHNr096kZaVoB0vAaAhHQMKWNLtu1nd1fZQoaAZHQHMjN8uzyBloB0vVaAhHQMKWPIUzsQd1fZQoaAZHQHODO0ojOcFoB0u6aAhHQMKWS35FgD11fZQoaAZHQHGYJOSGJvZoB0vGaAhHQMKWTRt52Qp1fZQoaAZHQHEAozeoDPpoB0u+aAhHQMKWT4oiLVF1fZQoaAZHQHLgpbUwztVoB01rAWgIR0DClluKTB69dX2UKGgGR0BxI3KQq7ROaAdLxmgIR0DClmreGfwrdX2UKGgGR0Bw9KUC7sfJaAdLwGgIR0DClmqQNkOJdX2UKGgGR0BxP3OQhfShaAdL4WgIR0DClmuoo/iYdX2UKGgGR0Bww2D+R5kcaAdL4GgIR0DClncDOkckdX2UKGgGR0ByTEqnWJ7+aAdL2mgIR0DClnwoJAt4dX2UKGgGR0BuoYPAfuCxaAdLx2gIR0DClqhqqOtGdX2UKGgGR0B0O/gTAWSEaAdL42gIR0DClqjsY2sJdX2UKGgGR0BtsD6nBLwnaAdLtmgIR0DClq3/NqxkdX2UKGgGR0Bwj+ODJ2dNaAdL0WgIR0DClr7VBlcydX2UKGgGR0Bx3g1Muez2aAdLxWgIR0DClsWCoS+QdX2UKGgGR0BxRLLPldTpaAdL3GgIR0DCls4Gt6omdX2UKGgGR0BxDaFJxvNvaAdL0GgIR0DCltWR/3FldX2UKGgGR0BzV7LkjopyaAdLyWgIR0DClt8Gkep5dX2UKGgGR0Bv5oJE6T4daAdLv2gIR0DCluZ+4LCvdX2UKGgGR0Bxj12A5JbuaAdL2WgIR0DCluz6JqIrdX2UKGgGR0Bvy96kZaV2aAdL52gIR0DClvOjO9nLdX2UKGgGR0BwVNp7CzkZaAdLumgIR0DClv8uHvc8dX2UKGgGR0Bxxz/+85CGaAdL1GgIR0DClwVPBSDRdX2UKGgGR0Byue0fHPu5aAdL12gIR0DClwZr56+ndX2UKGgGR0ByMqU7jkuIaAdLx2gIR0DClw0pNKywdX2UKGgGR0BzKmbmU4aQaAdL6mgIR0DClxNGG21EdX2UKGgGR0BufSMJhOQAaAdLt2gIR0DClymZqmCRdX2UKGgGR0ByjIWN3np0aAdLwmgIR0DClzEAWBSUdX2UKGgGR0Byiwp1A7gbaAdL12gIR0DCl0RMSK3vdX2UKGgGR0BxBKSGJvYOaAdLvGgIR0DCl0d0tAcDdX2UKGgGR0BunxTl1bJPaAdL0WgIR0DCl1DvPToddX2UKGgGR0BxFAN3GGVSaAdLuGgIR0DCl1Q2n88+dX2UKGgGR0Bv1dJz1bqyaAdL1mgIR0DCl2IDLbHqdX2UKGgGR0BwUcuVX3g2aAdLwWgIR0DCl2OeJ53UdX2UKGgGR0BwjDnQpnYhaAdLs2gIR0DCl2cWKuSwdX2UKGgGR0BxMS7K7qY7aAdLuWgIR0DCl30pkPMCdX2UKGgGR0BwiNbW3BpIaAdLzmgIR0DCl4CrksBidX2UKGgGR0BxxCZNO/L1aAdL6mgIR0DCl4gIIF/ydX2UKGgGR0Bw77aSLZSOaAdLx2gIR0DCl43u1F6SdX2UKGgGR0BzaqNQ0oBraAdL22gIR0DCl51lqagFdX2UKGgGR0BushC8e0XxaAdLyWgIR0DCl56i7CizdX2UKGgGR0BzeVU5uIhyaAdL12gIR0DCl6Ggg5imdX2UKGgGR0BxT+AWi1zAaAdL1WgIR0DCl8d7pmmMdX2UKGgGR0Bze+zw+dK/aAdL8GgIR0DCl9Qo5PuYdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 738, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2304, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.017, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 144, "n_epochs": 9, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.25.0", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4c13208700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4c13208790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4c13208820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4c132088b0>", "_build": "<function ActorCriticPolicy._build at 0x7f4c13208940>", "forward": "<function ActorCriticPolicy.forward at 0x7f4c132089d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4c13208a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4c13208af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4c13208b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4c13208c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4c13208ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4c13208d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4c131f9a00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1013760, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688675799107941303, "learning_rate": 0.00037, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAgAAAAAAALO/7D1GUQA/pppYvZZjPr/n40o+LNy2vQAAAAAAAAAAM94WPa6Frz92YBc/AQu4vkU7U7xTp2g9AAAAAAAAAACA7Xy93PBIP3fVLL0EFVO/LIQavmhQ+zoAAAAAAAAAAKYWSb41/hA/W5DJO3ukJr9VRKq+ctoSPgAAAAAAAAAAAGvWvK7DkrqmkYg1HrsZMARdFrtGvrS0AACAPwAAgD8AKMe8j955uhsuWLWkdcmwyoxsOdO8gjQAAIA/AACAPzO3AT32nD+60KYIMyOT+jDYa1C7lW3DswAAgD8AAIA/ZlylvOHEm7p1Tpm6T3O1tldEGTrt2K45AACAPwAAgD/NPEw87Jz7u31wWj3Rghk9KIxbvUqx+j0AAIA/AACAP82VaD5Udya9uBqpOtUId7ma05C+Gk/tuQAAgD8AAIA/AI+HvOFs+bqqYKs9HATAPBuCL7zQXqQ9AACAPwAAgD/tNjK+5VOUP+o3Ar+aTAO/o2SevpB20L4AAAAAAAAAAM1nsDwf1eu51K0Yvtl4lTRic2o7yogFtAAAgD8AAIA/mmfQPZ638T0rpa++vrD6vslOrDuzhR2+AAAAAAAAAADA4Y29vl9TP7uUqr01Ulq/xyc6vjsv0TwAAAAAAAAAADOjGLzX/Sy7ttsAvnMdoDzpjzM8MniJvQAAgD8AAIA/mvEmvOyUgDxQwL098SBpvnu/gj2z/Y89AAAAAAAAAABmzxw9BSuwP3/dPz+r5Li+pP/OvMU2dLwAAAAAAAAAAFpn87036SI+3l8DP6o4+r64qi8+Bd95PgAAAAAAAAAAAIlYve4Suz+cvwu/tnATPkJ4xrvrmTW+AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxRLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksUhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.013759999999999994, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLBU/fO2ReMAWyUS72MAXSUR0Ch1xuIZZSvdX2UKGgGR0BwB4i/wiJPaAdLu2gIR0Ch1zXpOerddX2UKGgGR0ByUuwQlKK6aAdLtGgIR0Ch11RWLgn/dX2UKGgGR0Bz4I7nxJ/YaAdL0WgIR0Ch14YLb5/LdX2UKGgGR0BznOJVKf4AaAdLt2gIR0Ch143o9s7/dX2UKGgGR0Bz65rqMWGiaAdL3mgIR0Ch15baZhKEdX2UKGgGR0Bx1e+yquKXaAdLyWgIR0Ch16PVNHpbdX2UKGgGR0BzNDcGkep5aAdLy2gIR0Ch16t/vv0AdX2UKGgGR0ByMpzBAOawaAdLrWgIR0Ch163Sa3I/dX2UKGgGR0BxTaOjqOcUaAdLrmgIR0Ch17wmeDnOdX2UKGgGR0BwYqdf9gndaAdLpWgIR0Ch19gYP5HmdX2UKGgGR0Bxl500WM0haAdLm2gIR0Ch1+q7ZnL8dX2UKGgGR0BwNSeI2wV1aAdLjWgIR0Ch2DEQGwA3dX2UKGgGR0BwNCtihFmWaAdLjGgIR0Ch2EZvUBn0dX2UKGgGR0Bw1/d30PH1aAdLpWgIR0Ch2Kxf4REndX2UKGgGR0BzP25z5oGqaAdLxGgIR0Ch2R6InBtUdX2UKGgGR0BytInXumaZaAdLv2gIR0Ch2TCDmKZVdX2UKGgGR0Bx11X7tRekaAdLqWgIR0Ch2URWT5fudX2UKGgGR0B0IZ9LHuJDaAdL8GgIR0Ch2WO6unuRdX2UKGgGR0Byk4SYgJTmaAdLjWgIR0Ch2W/Ls8gZdX2UKGgGR0Bzfr5qM3qBaAdLzmgIR0Ch2YiNjslcdX2UKGgGR0BwATl2eQMhaAdLnWgIR0Ch2YYx1xKhdX2UKGgGR0BvlX+KjzqbaAdLmmgIR0Ch2Yv7FbV0dX2UKGgGR0BxiPd+G47SaAdLx2gIR0Ch2ZGn4wh4dX2UKGgGR0Bw+EbrC3w1aAdLs2gIR0Ch2ZzhxYJWdX2UKGgGR0ByflYaHbh4aAdLrmgIR0Ch2b+GO+7EdX2UKGgGR0Bza+1NQCSzaAdLzWgIR0Ch2c2vStvGdX2UKGgGR0ByjMUwi7kGaAdLtWgIR0Ch2gH4O+ZgdX2UKGgGR0BxbygUUO/daAdLqWgIR0Ch2g526kIpdX2UKGgGR0BxtWsQumJnaAdLwGgIR0Ch2hKqwQlKdX2UKGgGR0BxvudBjWkKaAdLkWgIR0Ch2hC+De0pdX2UKGgGR0ByEKxKQJXyaAdLuGgIR0Ch2iYpDu0DdX2UKGgGR0ByC52GIsRQaAdLyWgIR0Ch2i4g7o0RdX2UKGgGR0BxUQyxiXpoaAdLqmgIR0Ch2m+dbxEwdX2UKGgGR0ByXiwr1/UfaAdLomgIR0Ch2rCSzPa+dX2UKGgGR0BwpdbW3BpIaAdLnWgIR0Ch20tMGorGdX2UKGgGR0ByNNyhi9ZiaAdLpWgIR0Ch25NC7btadX2UKGgGR0BxeuJ40Mw2aAdLsWgIR0Ch28g6U7jldX2UKGgGR0BygSf9P1tgaAdLqmgIR0Ch28bedkJ8dX2UKGgGR0BzH085jpcHaAdLx2gIR0Ch284iosI3dX2UKGgGR0BzqiQyRB/raAdL2mgIR0Ch2+9FvybydX2UKGgGR0By09z3h4t6aAdLvGgIR0Ch2/5TyauwdX2UKGgGR0BzZBgqmTC+aAdLyGgIR0Ch3APVd5Y6dX2UKGgGR0Bx/6a6STyKaAdLtGgIR0Ch3CYao/A1dX2UKGgGR0Bx1pyQxN7CaAdLu2gIR0Ch3C3/Pw/gdX2UKGgGR0BxhWaAnUlSaAdLsWgIR0Ch3FLEDQqqdX2UKGgGR0Bu+v0K7ZnMaAdLqmgIR0Ch3GcgZCOWdX2UKGgGR0BxhAhMajveaAdLs2gIR0Ch3GrqD9OzdX2UKGgGR0By1Oasp5NXaAdLr2gIR0Ch3IKWC2+gdX2UKGgGR0Bzzq1kUbkwaAdL6mgIR0Ch3JHdoFmndX2UKGgGR0ByqOVcD8tPaAdLwmgIR0Ch3KFmOEM9dX2UKGgGR0BxqomMOwxGaAdLnmgIR0Ch3NgNXo1UdX2UKGgGR0B0ZZ39rGipaAdL2WgIR0Ch3OmKhtcfdX2UKGgGR0ByEAx8D0UXaAdLwmgIR0Ch3QiKiwjddX2UKGgGR0By8oN2C/XYaAdLn2gIR0Ch3XnscABDdX2UKGgGR0Bx7F2Qnx8VaAdLsmgIR0Ch3gctf5UMdX2UKGgGR0ByPVsk6cRUaAdLqmgIR0Ch3hcry1/ldX2UKGgGR0Byje+VTrE+aAdLq2gIR0Ch3iD9OymidX2UKGgGR0Bw6qdCmdiEaAdLpGgIR0Ch3jiw8nuzdX2UKGgGR0Byf3xI8QqaaAdLsmgIR0Ch3lUNBnjAdX2UKGgGR0BzosbFS88LaAdLxWgIR0Ch3niL2pQ2dX2UKGgGR0B0R49xIatLaAdLt2gIR0Ch3qJTER8MdX2UKGgGR0BydvnvDxb0aAdLxGgIR0Ch3qYjB2wFdX2UKGgGR0Bygxq8DjioaAdLhWgIR0Ch3rH/tICmdX2UKGgGR0B0x+zw+dK/aAdLr2gIR0Ch3s2VNYbLdX2UKGgGR0BxcfyGzru6aAdLqGgIR0Ch3t/QSi/PdX2UKGgGR0By5FhjOLR8aAdLymgIR0Ch3u45DJEIdX2UKGgGR0Bz98gMc6vJaAdLvmgIR0Ch3u6Skj5cdX2UKGgGR0BzgrYUWVNYaAdLwmgIR0Ch3w5rgwXZdX2UKGgGR0BxrVnL7oB8aAdLwWgIR0Ch3yK7ZnL8dX2UKGgGR0BydrzH0btJaAdLoWgIR0Ch3yG0VrRCdX2UKGgGR0BxMWEWZZ0TaAdLvGgIR0Ch3zAdfb9IdX2UKGgGR0BzKIroW56MaAdLsGgIR0Ch32jyOJcgdX2UKGgGR0BzNp54W1twaAdL0mgIR0Ch4Fw0GeMAdX2UKGgGR0ByCwQL/jsEaAdLsWgIR0Ch4IMKLKmsdX2UKGgGR0B0gNrTH80laAdLsGgIR0Ch4ImKZUkwdX2UKGgGR0BzEdakhzNmaAdLrmgIR0Ch4JsyzolldX2UKGgGR0B0q3TlT3qSaAdLqmgIR0Ch4Kt5+pfhdX2UKGgGR0ByekVN5+pgaAdLwWgIR0Ch4K3hGYrsdX2UKGgGR0BxdvHfdhy9aAdLqGgIR0Ch4Ou5BkZrdX2UKGgGR0BxxKnXNC7caAdLnWgIR0Ch4QBsImgKdX2UKGgGR0BxMBof0VafaAdLo2gIR0Ch4SObAk9mdX2UKGgGR0BxKHbah6BzaAdLy2gIR0Ch4TuI68xsdX2UKGgGR0BywO5H3DekaAdLwmgIR0Ch4VOsT37DdX2UKGgGR0Bv64geRxLkaAdLpGgIR0Ch4V/16E8JdX2UKGgGR0BzGDa+N96UaAdLwWgIR0Ch4WvUz9CNdX2UKGgGR0Bx0jSNOuaGaAdLuGgIR0Ch4W57w8W9dX2UKGgGR0ByXdzltCRfaAdL0mgIR0Ch4YHpSrHVdX2UKGgGR0ByAquGKyfMaAdLuWgIR0Ch4aTnaFmGdX2UKGgGR0B0Ucq+ajN7aAdLv2gIR0Ch4cbYTTOPdX2UKGgGR0BzU6psGgSOaAdL2mgIR0Ch4gCFTNt7dX2UKGgGR0Bx/ZM495hSaAdLwWgIR0Ch4hBWgezVdX2UKGgGR0BvtNBjWkJsaAdLjmgIR0Ch4nvB7/n4dX2UKGgGR0BwF/rWy1NQaAdLl2gIR0Ch4oRvegtfdX2UKGgGR0BxA151Ng0CaAdLq2gIR0Ch4qrYPGyYdX2UKGgGR0BwCryI55quaAdLp2gIR0Ch4sOH31zydX2UKGgGR0BxsVYjjaPCaAdLr2gIR0Ch4v1lwtJ4dX2UKGgGR0BvgId4mkWRaAdLpmgIR0Ch4zeaKDTSdX2UKGgGR0ByoKnyd4FBaAdLoGgIR0Ch40ZUtI07dX2UKGgGR0BxlNyQxN7CaAdLw2gIR0Ch40cH4XXRdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1060, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 20, "n_steps": 2304, "gamma": 0.999, "gae_lambda": 0.96, "ent_coef": 0.018, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz84P5HmRvFWhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1ab964e58ebff6c5068dbfa0ca4683d6bcc1000e5a04a3f00bf5b90343ed342
|
3 |
+
size 146800
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,57 +4,57 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
-
"learning_rate": 0.
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
-
":serialized:": "
|
58 |
"dtype": "float32",
|
59 |
"bounded_below": "[ True True True True True True True True]",
|
60 |
"bounded_above": "[ True True True True True True True True]",
|
@@ -69,22 +69,22 @@
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
-
":serialized:": "
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
76 |
"dtype": "int64",
|
77 |
"_np_random": null
|
78 |
},
|
79 |
-
"n_envs":
|
80 |
"n_steps": 2304,
|
81 |
"gamma": 0.999,
|
82 |
-
"gae_lambda": 0.
|
83 |
-
"ent_coef": 0.
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
-
"batch_size":
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
@@ -94,6 +94,6 @@
|
|
94 |
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
98 |
}
|
99 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f4c13208700>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4c13208790>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4c13208820>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4c132088b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f4c13208940>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f4c132089d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4c13208a60>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4c13208af0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f4c13208b80>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4c13208c10>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4c13208ca0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4c13208d30>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f4c131f9a00>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1013760,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1688675799107941303,
|
30 |
+
"learning_rate": 0.00037,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWV9QIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAgAAAAAAALO/7D1GUQA/pppYvZZjPr/n40o+LNy2vQAAAAAAAAAAM94WPa6Frz92YBc/AQu4vkU7U7xTp2g9AAAAAAAAAACA7Xy93PBIP3fVLL0EFVO/LIQavmhQ+zoAAAAAAAAAAKYWSb41/hA/W5DJO3ukJr9VRKq+ctoSPgAAAAAAAAAAAGvWvK7DkrqmkYg1HrsZMARdFrtGvrS0AACAPwAAgD8AKMe8j955uhsuWLWkdcmwyoxsOdO8gjQAAIA/AACAPzO3AT32nD+60KYIMyOT+jDYa1C7lW3DswAAgD8AAIA/ZlylvOHEm7p1Tpm6T3O1tldEGTrt2K45AACAPwAAgD/NPEw87Jz7u31wWj3Rghk9KIxbvUqx+j0AAIA/AACAP82VaD5Udya9uBqpOtUId7ma05C+Gk/tuQAAgD8AAIA/AI+HvOFs+bqqYKs9HATAPBuCL7zQXqQ9AACAPwAAgD/tNjK+5VOUP+o3Ar+aTAO/o2SevpB20L4AAAAAAAAAAM1nsDwf1eu51K0Yvtl4lTRic2o7yogFtAAAgD8AAIA/mmfQPZ638T0rpa++vrD6vslOrDuzhR2+AAAAAAAAAADA4Y29vl9TP7uUqr01Ulq/xyc6vjsv0TwAAAAAAAAAADOjGLzX/Sy7ttsAvnMdoDzpjzM8MniJvQAAgD8AAIA/mvEmvOyUgDxQwL098SBpvnu/gj2z/Y89AAAAAAAAAABmzxw9BSuwP3/dPz+r5Li+pP/OvMU2dLwAAAAAAAAAAFpn87036SI+3l8DP6o4+r64qi8+Bd95PgAAAAAAAAAAAIlYve4Suz+cvwu/tnATPkJ4xrvrmTW+AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxRLCIaUjAFDlHSUUpQu"
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVhwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksUhZSMAUOUdJRSlC4="
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.013759999999999994,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLBU/fO2ReMAWyUS72MAXSUR0Ch1xuIZZSvdX2UKGgGR0BwB4i/wiJPaAdLu2gIR0Ch1zXpOerddX2UKGgGR0ByUuwQlKK6aAdLtGgIR0Ch11RWLgn/dX2UKGgGR0Bz4I7nxJ/YaAdL0WgIR0Ch14YLb5/LdX2UKGgGR0BznOJVKf4AaAdLt2gIR0Ch143o9s7/dX2UKGgGR0Bz65rqMWGiaAdL3mgIR0Ch15baZhKEdX2UKGgGR0Bx1e+yquKXaAdLyWgIR0Ch16PVNHpbdX2UKGgGR0BzNDcGkep5aAdLy2gIR0Ch16t/vv0AdX2UKGgGR0ByMpzBAOawaAdLrWgIR0Ch163Sa3I/dX2UKGgGR0BxTaOjqOcUaAdLrmgIR0Ch17wmeDnOdX2UKGgGR0BwYqdf9gndaAdLpWgIR0Ch19gYP5HmdX2UKGgGR0Bxl500WM0haAdLm2gIR0Ch1+q7ZnL8dX2UKGgGR0BwNSeI2wV1aAdLjWgIR0Ch2DEQGwA3dX2UKGgGR0BwNCtihFmWaAdLjGgIR0Ch2EZvUBn0dX2UKGgGR0Bw1/d30PH1aAdLpWgIR0Ch2Kxf4REndX2UKGgGR0BzP25z5oGqaAdLxGgIR0Ch2R6InBtUdX2UKGgGR0BytInXumaZaAdLv2gIR0Ch2TCDmKZVdX2UKGgGR0Bx11X7tRekaAdLqWgIR0Ch2URWT5fudX2UKGgGR0B0IZ9LHuJDaAdL8GgIR0Ch2WO6unuRdX2UKGgGR0Byk4SYgJTmaAdLjWgIR0Ch2W/Ls8gZdX2UKGgGR0Bzfr5qM3qBaAdLzmgIR0Ch2YiNjslcdX2UKGgGR0BwATl2eQMhaAdLnWgIR0Ch2YYx1xKhdX2UKGgGR0BvlX+KjzqbaAdLmmgIR0Ch2Yv7FbV0dX2UKGgGR0BxiPd+G47SaAdLx2gIR0Ch2ZGn4wh4dX2UKGgGR0Bw+EbrC3w1aAdLs2gIR0Ch2ZzhxYJWdX2UKGgGR0ByflYaHbh4aAdLrmgIR0Ch2b+GO+7EdX2UKGgGR0Bza+1NQCSzaAdLzWgIR0Ch2c2vStvGdX2UKGgGR0ByjMUwi7kGaAdLtWgIR0Ch2gH4O+ZgdX2UKGgGR0BxbygUUO/daAdLqWgIR0Ch2g526kIpdX2UKGgGR0BxtWsQumJnaAdLwGgIR0Ch2hKqwQlKdX2UKGgGR0BxvudBjWkKaAdLkWgIR0Ch2hC+De0pdX2UKGgGR0ByEKxKQJXyaAdLuGgIR0Ch2iYpDu0DdX2UKGgGR0ByC52GIsRQaAdLyWgIR0Ch2i4g7o0RdX2UKGgGR0BxUQyxiXpoaAdLqmgIR0Ch2m+dbxEwdX2UKGgGR0ByXiwr1/UfaAdLomgIR0Ch2rCSzPa+dX2UKGgGR0BwpdbW3BpIaAdLnWgIR0Ch20tMGorGdX2UKGgGR0ByNNyhi9ZiaAdLpWgIR0Ch25NC7btadX2UKGgGR0BxeuJ40Mw2aAdLsWgIR0Ch28g6U7jldX2UKGgGR0BygSf9P1tgaAdLqmgIR0Ch28bedkJ8dX2UKGgGR0BzH085jpcHaAdLx2gIR0Ch284iosI3dX2UKGgGR0BzqiQyRB/raAdL2mgIR0Ch2+9FvybydX2UKGgGR0By09z3h4t6aAdLvGgIR0Ch2/5TyauwdX2UKGgGR0BzZBgqmTC+aAdLyGgIR0Ch3APVd5Y6dX2UKGgGR0Bx/6a6STyKaAdLtGgIR0Ch3CYao/A1dX2UKGgGR0Bx1pyQxN7CaAdLu2gIR0Ch3C3/Pw/gdX2UKGgGR0BxhWaAnUlSaAdLsWgIR0Ch3FLEDQqqdX2UKGgGR0Bu+v0K7ZnMaAdLqmgIR0Ch3GcgZCOWdX2UKGgGR0BxhAhMajveaAdLs2gIR0Ch3GrqD9OzdX2UKGgGR0By1Oasp5NXaAdLr2gIR0Ch3IKWC2+gdX2UKGgGR0Bzzq1kUbkwaAdL6mgIR0Ch3JHdoFmndX2UKGgGR0ByqOVcD8tPaAdLwmgIR0Ch3KFmOEM9dX2UKGgGR0BxqomMOwxGaAdLnmgIR0Ch3NgNXo1UdX2UKGgGR0B0ZZ39rGipaAdL2WgIR0Ch3OmKhtcfdX2UKGgGR0ByEAx8D0UXaAdLwmgIR0Ch3QiKiwjddX2UKGgGR0By8oN2C/XYaAdLn2gIR0Ch3XnscABDdX2UKGgGR0Bx7F2Qnx8VaAdLsmgIR0Ch3gctf5UMdX2UKGgGR0ByPVsk6cRUaAdLqmgIR0Ch3hcry1/ldX2UKGgGR0Byje+VTrE+aAdLq2gIR0Ch3iD9OymidX2UKGgGR0Bw6qdCmdiEaAdLpGgIR0Ch3jiw8nuzdX2UKGgGR0Byf3xI8QqaaAdLsmgIR0Ch3lUNBnjAdX2UKGgGR0BzosbFS88LaAdLxWgIR0Ch3niL2pQ2dX2UKGgGR0B0R49xIatLaAdLt2gIR0Ch3qJTER8MdX2UKGgGR0BydvnvDxb0aAdLxGgIR0Ch3qYjB2wFdX2UKGgGR0Bygxq8DjioaAdLhWgIR0Ch3rH/tICmdX2UKGgGR0B0x+zw+dK/aAdLr2gIR0Ch3s2VNYbLdX2UKGgGR0BxcfyGzru6aAdLqGgIR0Ch3t/QSi/PdX2UKGgGR0By5FhjOLR8aAdLymgIR0Ch3u45DJEIdX2UKGgGR0Bz98gMc6vJaAdLvmgIR0Ch3u6Skj5cdX2UKGgGR0BzgrYUWVNYaAdLwmgIR0Ch3w5rgwXZdX2UKGgGR0BxrVnL7oB8aAdLwWgIR0Ch3yK7ZnL8dX2UKGgGR0BydrzH0btJaAdLoWgIR0Ch3yG0VrRCdX2UKGgGR0BxMWEWZZ0TaAdLvGgIR0Ch3zAdfb9IdX2UKGgGR0BzKIroW56MaAdLsGgIR0Ch32jyOJcgdX2UKGgGR0BzNp54W1twaAdL0mgIR0Ch4Fw0GeMAdX2UKGgGR0ByCwQL/jsEaAdLsWgIR0Ch4IMKLKmsdX2UKGgGR0B0gNrTH80laAdLsGgIR0Ch4ImKZUkwdX2UKGgGR0BzEdakhzNmaAdLrmgIR0Ch4JsyzolldX2UKGgGR0B0q3TlT3qSaAdLqmgIR0Ch4Kt5+pfhdX2UKGgGR0ByekVN5+pgaAdLwWgIR0Ch4K3hGYrsdX2UKGgGR0BxdvHfdhy9aAdLqGgIR0Ch4Ou5BkZrdX2UKGgGR0BxxKnXNC7caAdLnWgIR0Ch4QBsImgKdX2UKGgGR0BxMBof0VafaAdLo2gIR0Ch4SObAk9mdX2UKGgGR0BxKHbah6BzaAdLy2gIR0Ch4TuI68xsdX2UKGgGR0BywO5H3DekaAdLwmgIR0Ch4VOsT37DdX2UKGgGR0Bv64geRxLkaAdLpGgIR0Ch4V/16E8JdX2UKGgGR0BzGDa+N96UaAdLwWgIR0Ch4WvUz9CNdX2UKGgGR0Bx0jSNOuaGaAdLuGgIR0Ch4W57w8W9dX2UKGgGR0ByXdzltCRfaAdL0mgIR0Ch4YHpSrHVdX2UKGgGR0ByAquGKyfMaAdLuWgIR0Ch4aTnaFmGdX2UKGgGR0B0Ucq+ajN7aAdLv2gIR0Ch4cbYTTOPdX2UKGgGR0BzU6psGgSOaAdL2mgIR0Ch4gCFTNt7dX2UKGgGR0Bx/ZM495hSaAdLwWgIR0Ch4hBWgezVdX2UKGgGR0BvtNBjWkJsaAdLjmgIR0Ch4nvB7/n4dX2UKGgGR0BwF/rWy1NQaAdLl2gIR0Ch4oRvegtfdX2UKGgGR0BxA151Ng0CaAdLq2gIR0Ch4qrYPGyYdX2UKGgGR0BwCryI55quaAdLp2gIR0Ch4sOH31zydX2UKGgGR0BxsVYjjaPCaAdLr2gIR0Ch4v1lwtJ4dX2UKGgGR0BvgId4mkWRaAdLpmgIR0Ch4zeaKDTSdX2UKGgGR0ByoKnyd4FBaAdLoGgIR0Ch40ZUtI07dX2UKGgGR0BxlNyQxN7CaAdLw2gIR0Ch40cH4XXRdWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 1060,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
"dtype": "float32",
|
59 |
"bounded_below": "[ True True True True True True True True]",
|
60 |
"bounded_above": "[ True True True True True True True True]",
|
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
76 |
"dtype": "int64",
|
77 |
"_np_random": null
|
78 |
},
|
79 |
+
"n_envs": 20,
|
80 |
"n_steps": 2304,
|
81 |
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.96,
|
83 |
+
"ent_coef": 0.018,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 256,
|
87 |
+
"n_epochs": 20,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
94 |
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz84P5HmRvFWhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
}
|
99 |
}
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd57de52ca39204d4ecce2b6a788f74be7a1c34f63444e8f3038711be77fb201
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c97bd22765815f09da605cac6cb62102c59341e51a2bbca5e1d304fddb30f8a
|
3 |
+
size 43329
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -2,8 +2,8 @@
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.0.1+cu118
|
5 |
-
- GPU Enabled:
|
6 |
-
- Numpy: 1.
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
9 |
- OpenAI Gym: 0.25.2
|
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
9 |
- OpenAI Gym: 0.25.2
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 279.9220823, "std_reward": 17.621361575734685, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-06T20:50:19.271490"}
|