LunarLander / config.json
siemr's picture
Upload LunarLander trained
bb84f2c
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1d769f2ef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1d769f2f80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1d769f3010>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1d769f30a0>", "_build": "<function ActorCriticPolicy._build at 0x7f1d769f3130>", "forward": "<function ActorCriticPolicy.forward at 0x7f1d769f31c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1d769f3250>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1d769f32e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1d769f3370>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1d769f3400>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1d769f3490>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1d769f3520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1d769f5580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3022848, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688623239959559905, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABmdjxAArI/ZTT9Pm/Bpr7TYTe8EoUBvQAAAAAAAAAAwGuQvY/lCzsdKIQ+TBKJvobKXj3yhhi9AAAAAAAAgD+AeiI9kHvkPhYw1zwkqvC+WsLGPGYA37oAAAAAAAAAADNR9rzlgRc+FYuQPL0sr76Opye9ah/QuwAAAAAAAAAAM0MaO8MdMLqqco88xodwMgU3H7tNV/0zAACAPwAAgD+aw6W84ZyNuopsDrWSQAuwBXqcOvU1YzQAAIA/AACAP0b2L77Ejzw+5ooIPnE6tL4TBma+ENHRPAAAAAAAAAAAMJhWvhnHvT6uAV0+T/7EvldLEr7sJCA+AAAAAAAAAAAAITM+z+oBPx7Kwr2J0gK/L4VDPs00hb4AAAAAAAAAALOnrT0UvNK67oJZPpwQCr0HKKS9QqWDPgAAgD8AAAAAAMrBPQcJnj4wMBS/wN/JvkMyK757R02+AAAAAAAAAABzwIa9e2iYusZC5j3GBrE1H3/vOqLWoDQAAIA/AAAAAKZvgD2O5So/4DnlvUDKEb+5yrA9f8mzvQAAAAAAAAAAmibAvArfELuQ3Zs9TQYJPUUVQbzLquc9AACAPwAAgD+z8DK9rYyTP/r6XL70Kzm/cjg5veJzfr0AAAAAAAAAAGZ+Y7sp7FG6crPYNDNhW65YA+66M6cbtAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKfJK8L8aaMAWyUS82MAXSUR0DClBiYiPhidX2UKGgGR0Bx6zu8brC4aAdL22gIR0DClCmgg5imdX2UKGgGR0BwUCqS5iEyaAdLumgIR0DClCp1ie/YdX2UKGgGR0BzPF8pkPMCaAdLxGgIR0DClDnxMFlkdX2UKGgGR0BxfCUA1ejVaAdL7WgIR0DClD9+I/JOdX2UKGgGR0BWG4Ju2qkuaAdLcWgIR0DClFell9SddX2UKGgGR0Bx1umgrYoRaAdNbwFoCEdAwpRa+3YthHV9lChoBkdAb6U9Net0WGgHS8toCEdAwpRhPnjhk3V9lChoBkdActmBRAKOUGgHS81oCEdAwpRmq94/vHV9lChoBkdAcSd5ckdFOWgHS7BoCEdAwpR2dSVGC3V9lChoBkdAcDbW7e2uxWgHS9BoCEdAwpR4a5wwTXV9lChoBkdAcYoByCFsYWgHS85oCEdAwpR6hQm/nHV9lChoBkdAcL8nlXA/LWgHS+FoCEdAwpSEblRxcXV9lChoBkdAcjo85S3somgHS7xoCEdAwpSFUWl/IHV9lChoBkdAcIewG4ZuRGgHS8FoCEdAwpSLQLNOd3V9lChoBkdAcTexA0Kqn2gHS8NoCEdAwpSqTzundnV9lChoBkdAcObTx5LRKGgHS9ZoCEdAwpSx0btJF3V9lChoBkdAcYwxsEaESWgHS71oCEdAwpS1Y8uBc3V9lChoBkdAcuFiZv1lG2gHS6toCEdAwpS6nLq2SnV9lChoBkdAcyALRa5f+mgHS9ZoCEdAwpTGzTnaFnV9lChoBkdAcaxNQCSzPmgHS8toCEdAwpTMh37k4nV9lChoBkdAcHwDvE0iyWgHS71oCEdAwpTck690zXV9lChoBkdAcLp+5OJtSGgHS8JoCEdAwpUDHZK3/nV9lChoBkdAcXWU7jkuH2gHS+RoCEdAwpUL8Lron3V9lChoBkdAcQm/axoqTmgHS89oCEdAwpUNDcdo4HV9lChoBkdAcp1gbIcR2GgHS81oCEdAwpUP5JsfrHV9lChoBkdAcEiuIAOrhmgHS7VoCEdAwpURdHDrJXV9lChoBkdActt0Syt3fWgHS/NoCEdAwpUSFyq+8HV9lChoBkdAc07EpiI+GGgHS9loCEdAwpUjJeVs13V9lChoBkdAbr8ZR8+iamgHS+loCEdAwpUwWBSUDHV9lChoBkdAchUf16E8JWgHS7doCEdAwpU61v2oN3V9lChoBkdAcsKQgs9SuWgHS9BoCEdAwpVGQ04zanV9lChoBkdAcs/U9IPK+2gHTUMBaAhHQMKVRjkdWAB1fZQoaAZHQHD3f6fra/RoB0vJaAhHQMKVS/7rLQp1fZQoaAZHQHDQJpaiblRoB0u1aAhHQMKVTxTbWVh1fZQoaAZHQG4RdSde6ZpoB0vKaAhHQMKVUV4xDb91fZQoaAZHQHCQrel9BrxoB0vcaAhHQMKVfna37UJ1fZQoaAZHQHNQGiHqNZNoB0v0aAhHQMKVf4ku6Et1fZQoaAZHQHD9fYe1a4doB0u/aAhHQMKVjxKpT/B1fZQoaAZHQHIejuBtk4FoB0vIaAhHQMKVnB2fTTh1fZQoaAZHQHNFuYQarFRoB0vKaAhHQMKVoX/5tWN1fZQoaAZHQHKfhZEDyOJoB0vMaAhHQMKVpFeF+NN1fZQoaAZHQHEogeii7CloB0u6aAhHQMKVtsyJsO51fZQoaAZHQHCOEpmVZ9xoB0vuaAhHQMKVvwt8NQV1fZQoaAZHQHIbJlar3kBoB0v1aAhHQMKVv9onKGN1fZQoaAZHQHHRVYdQwbloB0u7aAhHQMKVwwWWQfZ1fZQoaAZHQHKRXEMspXpoB0u+aAhHQMKVz0dzXBh1fZQoaAZHQHNaVirksBhoB0v1aAhHQMKV1PpY9xJ1fZQoaAZHQG7Sxu0kWyloB0vMaAhHQMKV2OBDohZ1fZQoaAZHQHIYf/NqxkdoB0vEaAhHQMKV2MvIwM91fZQoaAZHQHE5cdYGMXJoB0vxaAhHQMKV/uSGJvZ1fZQoaAZHQHC8yyhSLqFoB0u1aAhHQMKWFIsiB5J1fZQoaAZHQHG4ZPdl/YtoB0veaAhHQMKWJNWdVed1fZQoaAZHQHOhxMi8nNRoB0vhaAhHQMKWKFgc94h1fZQoaAZHQG91dJrcj7hoB0u4aAhHQMKWK9ic5Kh1fZQoaAZHQHNr096kZaVoB0vAaAhHQMKWNLtu1nd1fZQoaAZHQHMjN8uzyBloB0vVaAhHQMKWPIUzsQd1fZQoaAZHQHODO0ojOcFoB0u6aAhHQMKWS35FgD11fZQoaAZHQHGYJOSGJvZoB0vGaAhHQMKWTRt52Qp1fZQoaAZHQHEAozeoDPpoB0u+aAhHQMKWT4oiLVF1fZQoaAZHQHLgpbUwztVoB01rAWgIR0DClluKTB69dX2UKGgGR0BxI3KQq7ROaAdLxmgIR0DClmreGfwrdX2UKGgGR0Bw9KUC7sfJaAdLwGgIR0DClmqQNkOJdX2UKGgGR0BxP3OQhfShaAdL4WgIR0DClmuoo/iYdX2UKGgGR0Bww2D+R5kcaAdL4GgIR0DClncDOkckdX2UKGgGR0ByTEqnWJ7+aAdL2mgIR0DClnwoJAt4dX2UKGgGR0BuoYPAfuCxaAdLx2gIR0DClqhqqOtGdX2UKGgGR0B0O/gTAWSEaAdL42gIR0DClqjsY2sJdX2UKGgGR0BtsD6nBLwnaAdLtmgIR0DClq3/NqxkdX2UKGgGR0Bwj+ODJ2dNaAdL0WgIR0DClr7VBlcydX2UKGgGR0Bx3g1Muez2aAdLxWgIR0DClsWCoS+QdX2UKGgGR0BxRLLPldTpaAdL3GgIR0DCls4Gt6omdX2UKGgGR0BxDaFJxvNvaAdL0GgIR0DCltWR/3FldX2UKGgGR0BzV7LkjopyaAdLyWgIR0DClt8Gkep5dX2UKGgGR0Bv5oJE6T4daAdLv2gIR0DCluZ+4LCvdX2UKGgGR0Bxj12A5JbuaAdL2WgIR0DCluz6JqIrdX2UKGgGR0Bvy96kZaV2aAdL52gIR0DClvOjO9nLdX2UKGgGR0BwVNp7CzkZaAdLumgIR0DClv8uHvc8dX2UKGgGR0Bxxz/+85CGaAdL1GgIR0DClwVPBSDRdX2UKGgGR0Byue0fHPu5aAdL12gIR0DClwZr56+ndX2UKGgGR0ByMqU7jkuIaAdLx2gIR0DClw0pNKywdX2UKGgGR0BzKmbmU4aQaAdL6mgIR0DClxNGG21EdX2UKGgGR0BufSMJhOQAaAdLt2gIR0DClymZqmCRdX2UKGgGR0ByjIWN3np0aAdLwmgIR0DClzEAWBSUdX2UKGgGR0Byiwp1A7gbaAdL12gIR0DCl0RMSK3vdX2UKGgGR0BxBKSGJvYOaAdLvGgIR0DCl0d0tAcDdX2UKGgGR0BunxTl1bJPaAdL0WgIR0DCl1DvPToddX2UKGgGR0BxFAN3GGVSaAdLuGgIR0DCl1Q2n88+dX2UKGgGR0Bv1dJz1bqyaAdL1mgIR0DCl2IDLbHqdX2UKGgGR0BwUcuVX3g2aAdLwWgIR0DCl2OeJ53UdX2UKGgGR0BwjDnQpnYhaAdLs2gIR0DCl2cWKuSwdX2UKGgGR0BxMS7K7qY7aAdLuWgIR0DCl30pkPMCdX2UKGgGR0BwiNbW3BpIaAdLzmgIR0DCl4CrksBidX2UKGgGR0BxxCZNO/L1aAdL6mgIR0DCl4gIIF/ydX2UKGgGR0Bw77aSLZSOaAdLx2gIR0DCl43u1F6SdX2UKGgGR0BzaqNQ0oBraAdL22gIR0DCl51lqagFdX2UKGgGR0BushC8e0XxaAdLyWgIR0DCl56i7CizdX2UKGgGR0BzeVU5uIhyaAdL12gIR0DCl6Ggg5imdX2UKGgGR0BxT+AWi1zAaAdL1WgIR0DCl8d7pmmMdX2UKGgGR0Bze+zw+dK/aAdL8GgIR0DCl9Qo5PuYdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 738, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2304, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.017, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 144, "n_epochs": 9, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.25.0", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}