sidharthsajith7 commited on
Commit
5f803d6
1 Parent(s): eed534b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -2
README.md CHANGED
@@ -5,7 +5,45 @@ datasets:
5
  - HuggingFaceH4/ultrafeedback_binarized
6
  language:
7
  - en
8
- base_model: google/gemma-7b
9
  pipeline_tag: question-answering
10
  library_name: transformers
11
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  - HuggingFaceH4/ultrafeedback_binarized
6
  language:
7
  - en
 
8
  pipeline_tag: question-answering
9
  library_name: transformers
10
+ ---
11
+
12
+ Model Description: armaGPT is a finetuned version of Gemma 7b, a pre-trained language model developed by Google. It is designed to generate human-like text based on the input it receives. And armaGPT is finetuned using DPO Training for fair and safe generation.
13
+
14
+ Model Architecture: The architecture of armaGPT is based on the transformer model, which is a type of recurrent neural network (RNN) that uses self-attention mechanisms to process input sequences.
15
+
16
+ Model Size: The model has approximately 7 billion parameters.
17
+
18
+
19
+
20
+ ### Context Length
21
+ Models are trained on a context length of 8192 tokens.
22
+
23
+ #### Running the model on a CPU
24
+
25
+
26
+ ```python
27
+ from transformers import AutoTokenizer, AutoModelForCausalLM
28
+ tokenizer = AutoTokenizer.from_pretrained("sidharthsajith7/armaGPT")
29
+ model = AutoModelForCausalLM.from_pretrained("sidharthsajith7/armaGPT")
30
+ input_text = "Write me a poem about Machine Learning."
31
+ input_ids = tokenizer(input_text, return_tensors="pt")
32
+ outputs = model.generate(**input_ids)
33
+ print(tokenizer.decode(outputs[0]))
34
+ ```
35
+
36
+
37
+ #### Running the model on a single / multi GPU
38
+
39
+
40
+ ```python
41
+ # pip install accelerate
42
+ from transformers import AutoTokenizer, AutoModelForCausalLM
43
+ tokenizer = AutoTokenizer.from_pretrained("sidharthsajith7/armaGPT")
44
+ model = AutoModelForCausalLM.from_pretrained("sidharthsajith7/armaGPT", device_map="auto")
45
+ input_text = "Write me a poem about Machine Learning."
46
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
47
+ outputs = model.generate(**input_ids)
48
+ print(tokenizer.decode(outputs[0]))
49
+ ```