ppo-LunarLander-v2 / config.json
siddhantmahalle's picture
Upload PPO LunarLander-v2 trained agent
811b84d
raw
history blame
14.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff1da038c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff1da038ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff1da038d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff1da038dc0>", "_build": "<function ActorCriticPolicy._build at 0x7ff1da038e50>", "forward": "<function ActorCriticPolicy.forward at 0x7ff1da038ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff1da038f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff1da039000>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff1da039090>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff1da039120>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff1da0391b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff1da12aa40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1660648878.8888545, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVAwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaC9ob21lL3NpZGRoL21pbmljb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxoL2hvbWUvc2lkZGgvbWluaWNvbmRhMy9lbnZzL2RlZXAtcmwtY2xhc3MvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGBPZb6D3wc9IHvmOhX9x7mSCpm+QzY6ugAAgD8AAIA/zRV8vXtwk7rk65s578mRtlmYFrtumrO4AACAPwAAgD8zFJY8j/Ztuh4hgjra5/M0wTE/uv1Al7kAAIA/AACAP7NNDb6k+iu7m6vyOSUsATcLOjI8Br8NuQAAgD8AAIA/M7YBvezx67mU3MO7AfPkN8fp2Tvz+pQ6AACAPwAAgD+NwQq++3WuO2jlND0UMf07jdWLvS6Ltz0AAIA/AACAP003ED17qyM/ftgxvk2kuL50mLy8eoYRvQAAAAAAAAAAAALJvLoLqD+23v+9fhyuvk8++7wGNEg9AAAAAAAAAABmF608jx5huiSDqLrFpza2DMKzOpDbwTkAAIA/AACAP01GLL6Kam08AKt6PN/57bp78QK+Lh7qOwAAgD8AAIA/GoWjPaSgRrkCLI+5XFMWtbtfiTvi36o4AACAPwAAgD+zYwA9PZoFubZdSrpgf9m1Su2JOeigcTkAAIA/AACAPwBss7tKKbI/y8OQvl8ozr738bQ7kSNGPQAAAAAAAAAApuKxPT7czD2eR0o9/zluvl0Bgz2ThaI7AAAAAAAAAACWIGq+xXS+PAYsS7tO8Nc5wkVIvnzUiToAAIA/AACAP6Y8U75SAtM8ATtBO15C+rnCnWy+yrmJugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUdmwprJjWECUhpRSlIwBbJRN6AOMAXSUR0B1eEtVaOghdX2UKGgGaAloD0MI5j3ONOFQYkCUhpRSlGgVTegDaBZHQHWCH0kGA091fZQoaAZoCWgPQwiwHYzYJ/ATQJSGlFKUaBVL/mgWR0B1hCohpxm1dX2UKGgGaAloD0MITWiSWFI/WkCUhpRSlGgVTegDaBZHQHWWg31jAi51fZQoaAZoCWgPQwg7G/LPDKxaQJSGlFKUaBVN6ANoFkdAdap1hb4agnV9lChoBmgJaA9DCKvN/6sOKmFAlIaUUpRoFU3oA2gWR0B1quT6i0v5dX2UKGgGaAloD0MIdcjNcAMAXECUhpRSlGgVTegDaBZHQHXk33YcvM91fZQoaAZoCWgPQwh9IeS8/0hXQJSGlFKUaBVN6ANoFkdAderiWE9MbnV9lChoBmgJaA9DCH0FacaiPWZAlIaUUpRoFU3oA2gWR0B2TAgr6LwXdX2UKGgGaAloD0MIYrt7gO6yWUCUhpRSlGgVTegDaBZHQHZRXWnTAnF1fZQoaAZoCWgPQwhUOlj/Z41gQJSGlFKUaBVN6ANoFkdAdmQ8Rcu8LHV9lChoBmgJaA9DCLN8XYb/CV9AlIaUUpRoFU3oA2gWR0B2afVqesgddX2UKGgGaAloD0MIeEKvP4lhYECUhpRSlGgVTegDaBZHQHZ6UP1+RYB1fZQoaAZoCWgPQwj+nlinSplhQJSGlFKUaBVN6ANoFkdAdnqXhfjS5XV9lChoBmgJaA9DCFw8vOfAD2BAlIaUUpRoFU3oA2gWR0B2fxCojv/jdX2UKGgGaAloD0MIw0Xu6epDYUCUhpRSlGgVTegDaBZHQHaJWDUVi4J1fZQoaAZoCWgPQwhXs874vlAwwJSGlFKUaBVNHwFoFkdAdpMenhsImnV9lChoBmgJaA9DCAdCsoAJlWJAlIaUUpRoFU3oA2gWR0B2l9d2Pkq+dX2UKGgGaAloD0MI0egOYufLYECUhpRSlGgVTegDaBZHQHaiJ48lolF1fZQoaAZoCWgPQwiS66aU15FjQJSGlFKUaBVN6ANoFkdAdqQzBhx5s3V9lChoBmgJaA9DCJPJqZ1hrGFAlIaUUpRoFU3oA2gWR0B2tg9ovi97dX2UKGgGaAloD0MIxK9Yw0VOAMCUhpRSlGgVTSkBaBZHQHbAsAq/dqN1fZQoaAZoCWgPQwhbtWtCWhdeQJSGlFKUaBVN6ANoFkdAdshZzPrv9nV9lChoBmgJaA9DCH09X7PcSmBAlIaUUpRoFU3oA2gWR0B2yLnX/YJ3dX2UKGgGaAloD0MIO/4LBAFaSMCUhpRSlGgVTSYBaBZHQHbO07KaG6B1fZQoaAZoCWgPQwitiQW+olxcQJSGlFKUaBVN6ANoFkdAdvycMVk+YHV9lChoBmgJaA9DCMMMjSeCzlRAlIaUUpRoFU3oA2gWR0B3Abo+wC8wdX2UKGgGaAloD0MINL4vLlWdYUCUhpRSlGgVTegDaBZHQHcoT7EYO2B1fZQoaAZoCWgPQwhkzcggd5thQJSGlFKUaBVN6ANoFkdAd3T6zVtoBnV9lChoBmgJaA9DCKT/5Vo02mFAlIaUUpRoFU3oA2gWR0B3edVXFLnLdX2UKGgGaAloD0MIYkhOJm79YUCUhpRSlGgVTegDaBZHQHeIldHDrJN1fZQoaAZoCWgPQwjF5XgFIgphQJSGlFKUaBVN6ANoFkdAd4jWEK3NLXV9lChoBmgJaA9DCB0hA3l2tlpAlIaUUpRoFU3oA2gWR0B3jRdjXnQqdX2UKGgGaAloD0MI9fbnoqFMYECUhpRSlGgVTegDaBZHQHegha9sabZ1fZQoaAZoCWgPQwjDn+HNGoBcQJSGlFKUaBVN6ANoFkdAd69/WDpTuXV9lChoBmgJaA9DCNodUgyQkV5AlIaUUpRoFU3oA2gWR0B3sarU9ZA6dX2UKGgGaAloD0MIonprYKtPXUCUhpRSlGgVTegDaBZHQHfDje0ojOd1fZQoaAZoCWgPQwgwuycPC5BXQJSGlFKUaBVN6ANoFkdAd844+8oQWnV9lChoBmgJaA9DCIhp39zf5WBAlIaUUpRoFU3oA2gWR0B31SKFZgXudX2UKGgGaAloD0MIArovZ7abYkCUhpRSlGgVTegDaBZHQHfVgC0WuYB1fZQoaAZoCWgPQwivlGWIY0U+QJSGlFKUaBVNPQFoFkdAd9t0j1PFenV9lChoBmgJaA9DCFUuVP414GJAlIaUUpRoFU3oA2gWR0B327ItDlYEdX2UKGgGaAloD0MI2NXkKashYkCUhpRSlGgVTegDaBZHQHf9Os90Rvp1fZQoaAZoCWgPQwiSrS6nBBFdQJSGlFKUaBVN6ANoFkdAeAGfl6qsEXV9lChoBmgJaA9DCDenkgGgKiFAlIaUUpRoFU1GAWgWR0B4GDcVQAMldX2UKGgGaAloD0MIeAskKP5MYECUhpRSlGgVTegDaBZHQHgi6JMxoIx1fZQoaAZoCWgPQwj5Eb9iDVtXQJSGlFKUaBVN6ANoFkdAeG5SWZ7Xx3V9lChoBmgJaA9DCMl06PS8yV9AlIaUUpRoFU3oA2gWR0B4cvwCr92pdX2UKGgGaAloD0MIl8eakUEu+T+UhpRSlGgVTRgBaBZHQHh0t/z8P4F1fZQoaAZoCWgPQwi8df7tskJgQJSGlFKUaBVN6ANoFkdAeIBq7ROUMXV9lChoBmgJaA9DCB7cnbXbFGFAlIaUUpRoFU3oA2gWR0B4gKWGATZhdX2UKGgGaAloD0MINpTai2gUWkCUhpRSlGgVTegDaBZHQHiErzkIX0p1fZQoaAZoCWgPQwgrMjogCcsaQJSGlFKUaBVNDwFoFkdAeId2UjcEeXV9lChoBmgJaA9DCDFdiNUfvGJAlIaUUpRoFU3oA2gWR0B4pryxzJZGdX2UKGgGaAloD0MIiSXl7nNiYUCUhpRSlGgVTegDaBZHQHipJqh11W91fZQoaAZoCWgPQwhFnE6y1eX6v5SGlFKUaBVL+WgWR0B4tI+KTB69dX2UKGgGaAloD0MIn48y4gL6X0CUhpRSlGgVTegDaBZHQHi9tdmg8KZ1fZQoaAZoCWgPQwiVm6iluXtWQJSGlFKUaBVN6ANoFkdAeMmRyfcvd3V9lChoBmgJaA9DCFlPrb66HF1AlIaUUpRoFU3oA2gWR0B40x/Ue+23dX2UKGgGaAloD0MI9Ib7yK2OXECUhpRSlGgVTegDaBZHQHjTgpe/pMZ1fZQoaAZoCWgPQwg4onvWNSNbQJSGlFKUaBVN6ANoFkdAeNobL2YfGXV9lChoBmgJaA9DCGB15EhngDRAlIaUUpRoFU0PAWgWR0B44EoBq9GrdX2UKGgGaAloD0MIAFXcuMXEIsCUhpRSlGgVTRcBaBZHQHjuPShJyyV1fZQoaAZoCWgPQwiAnDBhNAs8QJSGlFKUaBVNJAFoFkdAePkn27FsHnV9lChoBmgJaA9DCGjsSzaePGFAlIaUUpRoFU3oA2gWR0B4/1i1AqusdX2UKGgGaAloD0MIMlcG1QaKXECUhpRSlGgVTegDaBZHQHkoHeJpFkR1fZQoaAZoCWgPQwgpkxraADldQJSGlFKUaBVN6ANoFkdAeXbPdl/YrnV9lChoBmgJaA9DCKIpO/0gfGJAlIaUUpRoFU3oA2gWR0B5fCzWwu/UdX2UKGgGaAloD0MIVcGopE4wWkCUhpRSlGgVTegDaBZHQHl+ROclPad1fZQoaAZoCWgPQwhlOJ7PgJBXQJSGlFKUaBVN6ANoFkdAeYuIlt0mt3V9lChoBmgJaA9DCNpWs874YWRAlIaUUpRoFU3oA2gWR0B5i9rXUYsNdX2UKGgGaAloD0MIpS4Zx8gzYECUhpRSlGgVTegDaBZHQHmUoScslLR1fZQoaAZoCWgPQwj6YBkbOmZiQJSGlFKUaBVN6ANoFkdAeboDgIhQnHV9lChoBmgJaA9DCGMq/YSzfmJAlIaUUpRoFU3oA2gWR0B53Fg1FYuCdX2UKGgGaAloD0MIjln2JLBZX0CUhpRSlGgVTegDaBZHQHnkhk/bCaZ1fZQoaAZoCWgPQwi2vkhoy2JbQJSGlFKUaBVN6ANoFkdAeeTx/NJOFnV9lChoBmgJaA9DCM7F3/YEdGRAlIaUUpRoFU3oA2gWR0B57HdN34bkdX2UKGgGaAloD0MIWaKzzCLqX0CUhpRSlGgVTegDaBZHQHnzRxkupS91fZQoaAZoCWgPQwhZFkz80TFgQJSGlFKUaBVN6ANoFkdAegGW912aD3V9lChoBmgJaA9DCJW6ZBwjG2FAlIaUUpRoFU3oA2gWR0B6DKOHWSU1dX2UKGgGaAloD0MIbJih8UT3WkCUhpRSlGgVTegDaBZHQHoSraIvalF1fZQoaAZoCWgPQwiKkLqdffRfQJSGlFKUaBVN6ANoFkdAejmb9ZRsM3V9lChoBmgJaA9DCDnyQGQRzGNAlIaUUpRoFU3oA2gWR0B6hn1e0G/vdX2UKGgGaAloD0MIFCaMZuXoYECUhpRSlGgVTegDaBZHQHqLlZ1V5rx1fZQoaAZoCWgPQwh6qdiY15pgQJSGlFKUaBVN6ANoFkdAeo2O9WZJCnV9lChoBmgJaA9DCNnqckrA3WVAlIaUUpRoFU3oA2gWR0B6mhNzr/sFdX2UKGgGaAloD0MID4C4q1cMYECUhpRSlGgVTegDaBZHQHqaUona37V1fZQoaAZoCWgPQwg1ejVA6XZgQJSGlFKUaBVN6ANoFkdAeqFg0j1PFnV9lChoBmgJaA9DCKOtSiL7Z1xAlIaUUpRoFU3oA2gWR0B6wyCcwxnGdX2UKGgGaAloD0MIMA+Z8iHRYUCUhpRSlGgVTegDaBZHQHrkZoCdSVJ1fZQoaAZoCWgPQwj7WwLwT8lgQJSGlFKUaBVN6ANoFkdAeuxUA1ejVXV9lChoBmgJaA9DCB+g+3LmvGNAlIaUUpRoFU3oA2gWR0B67LuG9HtndX2UKGgGaAloD0MI/kemQ6cGWECUhpRSlGgVTegDaBZHQHrzo/zJ6pp1fZQoaAZoCWgPQwic4QZ8/jJkQJSGlFKUaBVN6ANoFkdAevoDej2zwHV9lChoBmgJaA9DCHS366UpjlpAlIaUUpRoFU3oA2gWR0B7Byf+S8radX2UKGgGaAloD0MI8Ief/x4WZUCUhpRSlGgVTegDaBZHQHsQ82m51/51fZQoaAZoCWgPQwhiD+1jBWlfQJSGlFKUaBVN6ANoFkdAexYx4Y77sXV9lChoBmgJaA9DCDaVRWGXxWNAlIaUUpRoFU3oA2gWR0B7Oc371qWUdX2UKGgGaAloD0MIcobijre5YUCUhpRSlGgVTegDaBZHQHtOZH/cWTJ1fZQoaAZoCWgPQwhCCMiXUMtiQJSGlFKUaBVN6ANoFkdAe1No0hvBJ3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVAwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaC9ob21lL3NpZGRoL21pbmljb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxoL2hvbWUvc2lkZGgvbWluaWNvbmRhMy9lbnZzL2RlZXAtcmwtY2xhc3MvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-33-generic-x86_64-with-glibc2.35 #34-Ubuntu SMP Wed May 18 13:34:26 UTC 2022", "Python": "3.10.5", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu116", "GPU Enabled": "True", "Numpy": "1.23.2", "Gym": "0.21.0"}}