sickcell69
commited on
Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +10 -0
- 2_Dense/config.json +1 -0
- 2_Dense/model.safetensors +3 -0
- 3_Dropout/config.json +1 -0
- README.md +411 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +26 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
2_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 384, "out_features": 128, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
|
2_Dense/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:611865f79fb43b24014c8dd2814900f8addc42f74dc266473143b371ea907fba
|
3 |
+
size 197280
|
3_Dropout/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"dropout": 0.3}
|
README.md
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: sentence-transformers/all-MiniLM-L6-v2
|
3 |
+
datasets: []
|
4 |
+
language: []
|
5 |
+
library_name: sentence-transformers
|
6 |
+
pipeline_tag: sentence-similarity
|
7 |
+
tags:
|
8 |
+
- sentence-transformers
|
9 |
+
- sentence-similarity
|
10 |
+
- feature-extraction
|
11 |
+
- generated_from_trainer
|
12 |
+
- dataset_size:68874
|
13 |
+
- loss:MultipleNegativesRankingLoss
|
14 |
+
widget:
|
15 |
+
- source_sentence: two extracts utilities, steal email. to .pst APT1 and uses MAPIGET,
|
16 |
+
GETMAIL emails GETMAIL Outlook from
|
17 |
+
sentences:
|
18 |
+
- April wild using takes Security the vulnerabilities attack , , 360 the lead new
|
19 |
+
in group’s the APT-C-06 2018 (CVE-2018-8174) the Core . 0-day In capturing
|
20 |
+
- in have and used scheduled droppers to persistence payloads tasks
|
21 |
+
- two extracts utilities, steal email. to .pst APT1 and uses MAPIGET, GETMAIL emails
|
22 |
+
GETMAIL Outlook from
|
23 |
+
- source_sentence: screen victim's remote has obtain machines. management tool monitoring
|
24 |
+
from and to captures ConnectWise SOUTHFIELD the
|
25 |
+
sentences:
|
26 |
+
- months any last intense evolve over team faster gathering 24 than capabilities
|
27 |
+
Operation . the the observed technical of effort During observed we , Iranian
|
28 |
+
intelligence rapidly the
|
29 |
+
- screen victim's remote has obtain machines. management tool monitoring from and
|
30 |
+
to captures ConnectWise SOUTHFIELD the
|
31 |
+
- C :\Windows\system32\cmd.exe /C shell whoami /all
|
32 |
+
- source_sentence: values database registry passwords from
|
33 |
+
sentences:
|
34 |
+
- BARIUM , a Chinese state player that also goes by APT17 , Axiom and Deputy Dog
|
35 |
+
, was previously linked to the ShadowPad and CCleaner incidents , which were also
|
36 |
+
supply-chain attacks that used software updates to sneak onto machines .
|
37 |
+
- It makes direct system calls using the “syscall” instruction.
|
38 |
+
- values database registry passwords from
|
39 |
+
- source_sentence: Bazar can inject code through calling <code>VirtualAllocExNuma</code>.
|
40 |
+
sentences:
|
41 |
+
- Bazar can inject code through calling <code>VirtualAllocExNuma</code>.
|
42 |
+
- input redirected and (cmd.exe) output. a process MCMD launch with can
|
43 |
+
- and status</code> uses located determine is System files searches <code>/Library/Preferences/</code>
|
44 |
+
enabled. Integrity firewall in XCSSET to Protection configuration
|
45 |
+
- source_sentence: to communications. Shark use ability in C2 HTTP
|
46 |
+
sentences:
|
47 |
+
- altered change adding hashes. four samples apparently a random bytes likely the
|
48 |
+
to Patchwork file attempt letters of in
|
49 |
+
- malware. to a download of specific execute KONNI used PowerShell 64-bit and
|
50 |
+
- to communications. Shark use ability in C2 HTTP
|
51 |
+
---
|
52 |
+
|
53 |
+
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
54 |
+
|
55 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 128-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
56 |
+
|
57 |
+
## Model Details
|
58 |
+
|
59 |
+
### Model Description
|
60 |
+
- **Model Type:** Sentence Transformer
|
61 |
+
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
|
62 |
+
- **Maximum Sequence Length:** 256 tokens
|
63 |
+
- **Output Dimensionality:** 128 tokens
|
64 |
+
- **Similarity Function:** Cosine Similarity
|
65 |
+
<!-- - **Training Dataset:** Unknown -->
|
66 |
+
<!-- - **Language:** Unknown -->
|
67 |
+
<!-- - **License:** Unknown -->
|
68 |
+
|
69 |
+
### Model Sources
|
70 |
+
|
71 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
72 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
73 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
74 |
+
|
75 |
+
### Full Model Architecture
|
76 |
+
|
77 |
+
```
|
78 |
+
SentenceTransformer(
|
79 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
80 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
81 |
+
(2): Dense({'in_features': 384, 'out_features': 128, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
82 |
+
(3): Dropout(
|
83 |
+
(dropout_layer): Dropout(p=0.3, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
```
|
87 |
+
|
88 |
+
## Usage
|
89 |
+
|
90 |
+
### Direct Usage (Sentence Transformers)
|
91 |
+
|
92 |
+
First install the Sentence Transformers library:
|
93 |
+
|
94 |
+
```bash
|
95 |
+
pip install -U sentence-transformers
|
96 |
+
```
|
97 |
+
|
98 |
+
Then you can load this model and run inference.
|
99 |
+
```python
|
100 |
+
from sentence_transformers import SentenceTransformer
|
101 |
+
|
102 |
+
# Download from the 🤗 Hub
|
103 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
104 |
+
# Run inference
|
105 |
+
sentences = [
|
106 |
+
'to communications. Shark use ability in C2 HTTP',
|
107 |
+
'to communications. Shark use ability in C2 HTTP',
|
108 |
+
'altered change adding hashes. four samples apparently a random bytes likely the to Patchwork file attempt letters of in',
|
109 |
+
]
|
110 |
+
embeddings = model.encode(sentences)
|
111 |
+
print(embeddings.shape)
|
112 |
+
# [3, 128]
|
113 |
+
|
114 |
+
# Get the similarity scores for the embeddings
|
115 |
+
similarities = model.similarity(embeddings, embeddings)
|
116 |
+
print(similarities.shape)
|
117 |
+
# [3, 3]
|
118 |
+
```
|
119 |
+
|
120 |
+
<!--
|
121 |
+
### Direct Usage (Transformers)
|
122 |
+
|
123 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
124 |
+
|
125 |
+
</details>
|
126 |
+
-->
|
127 |
+
|
128 |
+
<!--
|
129 |
+
### Downstream Usage (Sentence Transformers)
|
130 |
+
|
131 |
+
You can finetune this model on your own dataset.
|
132 |
+
|
133 |
+
<details><summary>Click to expand</summary>
|
134 |
+
|
135 |
+
</details>
|
136 |
+
-->
|
137 |
+
|
138 |
+
<!--
|
139 |
+
### Out-of-Scope Use
|
140 |
+
|
141 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
142 |
+
-->
|
143 |
+
|
144 |
+
<!--
|
145 |
+
## Bias, Risks and Limitations
|
146 |
+
|
147 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
148 |
+
-->
|
149 |
+
|
150 |
+
<!--
|
151 |
+
### Recommendations
|
152 |
+
|
153 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
154 |
+
-->
|
155 |
+
|
156 |
+
## Training Details
|
157 |
+
|
158 |
+
### Training Dataset
|
159 |
+
|
160 |
+
#### Unnamed Dataset
|
161 |
+
|
162 |
+
|
163 |
+
* Size: 68,874 training samples
|
164 |
+
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
|
165 |
+
* Approximate statistics based on the first 1000 samples:
|
166 |
+
| | sentence_0 | sentence_1 |
|
167 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
168 |
+
| type | string | string |
|
169 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 24.91 tokens</li><li>max: 111 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 24.91 tokens</li><li>max: 111 tokens</li></ul> |
|
170 |
+
* Samples:
|
171 |
+
| sentence_0 | sentence_1 |
|
172 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
173 |
+
| <code>RDAT can upload a file via HTTP POST response to the C2 split into 102,400-byte portions. RDAT can also download data from the C2 which is split into 81,920-byte portions.</code> | <code>RDAT can upload a file via HTTP POST response to the C2 split into 102,400-byte portions. RDAT can also download data from the C2 which is split into 81,920-byte portions.</code> |
|
174 |
+
| <code>The threat actor attempted to compromise critical assets , such as database servers , billing servers , and the active directory .</code> | <code>The threat actor attempted to compromise critical assets , such as database servers , billing servers , and the active directory .</code> |
|
175 |
+
| <code>computers leaked in two WannaCry , exploit Windows a any unpatched into turn EternalBlue computers used vulnerabilities to incorporated CVE-2017-0145 ransomware the vulnerable to the the . to victim's the that spreading connected and also capable other itself of network CVE-2017-0144 to worm and known</code> | <code>computers leaked in two WannaCry , exploit Windows a any unpatched into turn EternalBlue computers used vulnerabilities to incorporated CVE-2017-0145 ransomware the vulnerable to the the . to victim's the that spreading connected and also capable other itself of network CVE-2017-0144 to worm and known</code> |
|
176 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
177 |
+
```json
|
178 |
+
{
|
179 |
+
"scale": 20.0,
|
180 |
+
"similarity_fct": "cos_sim"
|
181 |
+
}
|
182 |
+
```
|
183 |
+
|
184 |
+
### Training Hyperparameters
|
185 |
+
#### Non-Default Hyperparameters
|
186 |
+
|
187 |
+
- `per_device_train_batch_size`: 16
|
188 |
+
- `per_device_eval_batch_size`: 16
|
189 |
+
- `num_train_epochs`: 5
|
190 |
+
- `multi_dataset_batch_sampler`: round_robin
|
191 |
+
|
192 |
+
#### All Hyperparameters
|
193 |
+
<details><summary>Click to expand</summary>
|
194 |
+
|
195 |
+
- `overwrite_output_dir`: False
|
196 |
+
- `do_predict`: False
|
197 |
+
- `eval_strategy`: no
|
198 |
+
- `prediction_loss_only`: True
|
199 |
+
- `per_device_train_batch_size`: 16
|
200 |
+
- `per_device_eval_batch_size`: 16
|
201 |
+
- `per_gpu_train_batch_size`: None
|
202 |
+
- `per_gpu_eval_batch_size`: None
|
203 |
+
- `gradient_accumulation_steps`: 1
|
204 |
+
- `eval_accumulation_steps`: None
|
205 |
+
- `torch_empty_cache_steps`: None
|
206 |
+
- `learning_rate`: 5e-05
|
207 |
+
- `weight_decay`: 0.0
|
208 |
+
- `adam_beta1`: 0.9
|
209 |
+
- `adam_beta2`: 0.999
|
210 |
+
- `adam_epsilon`: 1e-08
|
211 |
+
- `max_grad_norm`: 1
|
212 |
+
- `num_train_epochs`: 5
|
213 |
+
- `max_steps`: -1
|
214 |
+
- `lr_scheduler_type`: linear
|
215 |
+
- `lr_scheduler_kwargs`: {}
|
216 |
+
- `warmup_ratio`: 0.0
|
217 |
+
- `warmup_steps`: 0
|
218 |
+
- `log_level`: passive
|
219 |
+
- `log_level_replica`: warning
|
220 |
+
- `log_on_each_node`: True
|
221 |
+
- `logging_nan_inf_filter`: True
|
222 |
+
- `save_safetensors`: True
|
223 |
+
- `save_on_each_node`: False
|
224 |
+
- `save_only_model`: False
|
225 |
+
- `restore_callback_states_from_checkpoint`: False
|
226 |
+
- `no_cuda`: False
|
227 |
+
- `use_cpu`: False
|
228 |
+
- `use_mps_device`: False
|
229 |
+
- `seed`: 42
|
230 |
+
- `data_seed`: None
|
231 |
+
- `jit_mode_eval`: False
|
232 |
+
- `use_ipex`: False
|
233 |
+
- `bf16`: False
|
234 |
+
- `fp16`: False
|
235 |
+
- `fp16_opt_level`: O1
|
236 |
+
- `half_precision_backend`: auto
|
237 |
+
- `bf16_full_eval`: False
|
238 |
+
- `fp16_full_eval`: False
|
239 |
+
- `tf32`: None
|
240 |
+
- `local_rank`: 0
|
241 |
+
- `ddp_backend`: None
|
242 |
+
- `tpu_num_cores`: None
|
243 |
+
- `tpu_metrics_debug`: False
|
244 |
+
- `debug`: []
|
245 |
+
- `dataloader_drop_last`: False
|
246 |
+
- `dataloader_num_workers`: 0
|
247 |
+
- `dataloader_prefetch_factor`: None
|
248 |
+
- `past_index`: -1
|
249 |
+
- `disable_tqdm`: False
|
250 |
+
- `remove_unused_columns`: True
|
251 |
+
- `label_names`: None
|
252 |
+
- `load_best_model_at_end`: False
|
253 |
+
- `ignore_data_skip`: False
|
254 |
+
- `fsdp`: []
|
255 |
+
- `fsdp_min_num_params`: 0
|
256 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
257 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
258 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
259 |
+
- `deepspeed`: None
|
260 |
+
- `label_smoothing_factor`: 0.0
|
261 |
+
- `optim`: adamw_torch
|
262 |
+
- `optim_args`: None
|
263 |
+
- `adafactor`: False
|
264 |
+
- `group_by_length`: False
|
265 |
+
- `length_column_name`: length
|
266 |
+
- `ddp_find_unused_parameters`: None
|
267 |
+
- `ddp_bucket_cap_mb`: None
|
268 |
+
- `ddp_broadcast_buffers`: False
|
269 |
+
- `dataloader_pin_memory`: True
|
270 |
+
- `dataloader_persistent_workers`: False
|
271 |
+
- `skip_memory_metrics`: True
|
272 |
+
- `use_legacy_prediction_loop`: False
|
273 |
+
- `push_to_hub`: False
|
274 |
+
- `resume_from_checkpoint`: None
|
275 |
+
- `hub_model_id`: None
|
276 |
+
- `hub_strategy`: every_save
|
277 |
+
- `hub_private_repo`: False
|
278 |
+
- `hub_always_push`: False
|
279 |
+
- `gradient_checkpointing`: False
|
280 |
+
- `gradient_checkpointing_kwargs`: None
|
281 |
+
- `include_inputs_for_metrics`: False
|
282 |
+
- `eval_do_concat_batches`: True
|
283 |
+
- `fp16_backend`: auto
|
284 |
+
- `push_to_hub_model_id`: None
|
285 |
+
- `push_to_hub_organization`: None
|
286 |
+
- `mp_parameters`:
|
287 |
+
- `auto_find_batch_size`: False
|
288 |
+
- `full_determinism`: False
|
289 |
+
- `torchdynamo`: None
|
290 |
+
- `ray_scope`: last
|
291 |
+
- `ddp_timeout`: 1800
|
292 |
+
- `torch_compile`: False
|
293 |
+
- `torch_compile_backend`: None
|
294 |
+
- `torch_compile_mode`: None
|
295 |
+
- `dispatch_batches`: None
|
296 |
+
- `split_batches`: None
|
297 |
+
- `include_tokens_per_second`: False
|
298 |
+
- `include_num_input_tokens_seen`: False
|
299 |
+
- `neftune_noise_alpha`: None
|
300 |
+
- `optim_target_modules`: None
|
301 |
+
- `batch_eval_metrics`: False
|
302 |
+
- `eval_on_start`: False
|
303 |
+
- `eval_use_gather_object`: False
|
304 |
+
- `batch_sampler`: batch_sampler
|
305 |
+
- `multi_dataset_batch_sampler`: round_robin
|
306 |
+
|
307 |
+
</details>
|
308 |
+
|
309 |
+
### Training Logs
|
310 |
+
| Epoch | Step | Training Loss |
|
311 |
+
|:------:|:-----:|:-------------:|
|
312 |
+
| 0.1161 | 500 | 0.0029 |
|
313 |
+
| 0.2323 | 1000 | 0.0017 |
|
314 |
+
| 0.3484 | 1500 | 0.0015 |
|
315 |
+
| 0.4646 | 2000 | 0.0015 |
|
316 |
+
| 0.5807 | 2500 | 0.0023 |
|
317 |
+
| 0.6969 | 3000 | 0.0016 |
|
318 |
+
| 0.8130 | 3500 | 0.0017 |
|
319 |
+
| 0.9292 | 4000 | 0.0013 |
|
320 |
+
| 1.0453 | 4500 | 0.0011 |
|
321 |
+
| 1.1614 | 5000 | 0.001 |
|
322 |
+
| 1.2776 | 5500 | 0.0009 |
|
323 |
+
| 1.3937 | 6000 | 0.0009 |
|
324 |
+
| 1.5099 | 6500 | 0.0012 |
|
325 |
+
| 1.6260 | 7000 | 0.0013 |
|
326 |
+
| 1.7422 | 7500 | 0.0013 |
|
327 |
+
| 1.8583 | 8000 | 0.0013 |
|
328 |
+
| 1.9744 | 8500 | 0.0008 |
|
329 |
+
| 2.0906 | 9000 | 0.0007 |
|
330 |
+
| 2.2067 | 9500 | 0.0007 |
|
331 |
+
| 2.3229 | 10000 | 0.0009 |
|
332 |
+
| 2.4390 | 10500 | 0.0007 |
|
333 |
+
| 2.5552 | 11000 | 0.0011 |
|
334 |
+
| 2.6713 | 11500 | 0.0009 |
|
335 |
+
| 2.7875 | 12000 | 0.0008 |
|
336 |
+
| 2.9036 | 12500 | 0.0006 |
|
337 |
+
| 3.0197 | 13000 | 0.0006 |
|
338 |
+
| 3.1359 | 13500 | 0.0007 |
|
339 |
+
| 3.2520 | 14000 | 0.0006 |
|
340 |
+
| 3.3682 | 14500 | 0.0007 |
|
341 |
+
| 3.4843 | 15000 | 0.0006 |
|
342 |
+
| 3.6005 | 15500 | 0.0013 |
|
343 |
+
| 3.7166 | 16000 | 0.0008 |
|
344 |
+
| 3.8328 | 16500 | 0.0008 |
|
345 |
+
| 3.9489 | 17000 | 0.0006 |
|
346 |
+
| 4.0650 | 17500 | 0.0006 |
|
347 |
+
| 4.1812 | 18000 | 0.0006 |
|
348 |
+
| 4.2973 | 18500 | 0.0005 |
|
349 |
+
| 4.4135 | 19000 | 0.0006 |
|
350 |
+
| 4.5296 | 19500 | 0.0008 |
|
351 |
+
| 4.6458 | 20000 | 0.0006 |
|
352 |
+
| 4.7619 | 20500 | 0.0006 |
|
353 |
+
| 4.8780 | 21000 | 0.0005 |
|
354 |
+
| 4.9942 | 21500 | 0.0005 |
|
355 |
+
|
356 |
+
|
357 |
+
### Framework Versions
|
358 |
+
- Python: 3.11.7
|
359 |
+
- Sentence Transformers: 3.0.1
|
360 |
+
- Transformers: 4.43.3
|
361 |
+
- PyTorch: 2.4.0+cu118
|
362 |
+
- Accelerate: 0.33.0
|
363 |
+
- Datasets: 2.20.0
|
364 |
+
- Tokenizers: 0.19.1
|
365 |
+
|
366 |
+
## Citation
|
367 |
+
|
368 |
+
### BibTeX
|
369 |
+
|
370 |
+
#### Sentence Transformers
|
371 |
+
```bibtex
|
372 |
+
@inproceedings{reimers-2019-sentence-bert,
|
373 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
374 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
375 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
376 |
+
month = "11",
|
377 |
+
year = "2019",
|
378 |
+
publisher = "Association for Computational Linguistics",
|
379 |
+
url = "https://arxiv.org/abs/1908.10084",
|
380 |
+
}
|
381 |
+
```
|
382 |
+
|
383 |
+
#### MultipleNegativesRankingLoss
|
384 |
+
```bibtex
|
385 |
+
@misc{henderson2017efficient,
|
386 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
387 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
388 |
+
year={2017},
|
389 |
+
eprint={1705.00652},
|
390 |
+
archivePrefix={arXiv},
|
391 |
+
primaryClass={cs.CL}
|
392 |
+
}
|
393 |
+
```
|
394 |
+
|
395 |
+
<!--
|
396 |
+
## Glossary
|
397 |
+
|
398 |
+
*Clearly define terms in order to be accessible across audiences.*
|
399 |
+
-->
|
400 |
+
|
401 |
+
<!--
|
402 |
+
## Model Card Authors
|
403 |
+
|
404 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
405 |
+
-->
|
406 |
+
|
407 |
+
<!--
|
408 |
+
## Model Card Contact
|
409 |
+
|
410 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
411 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.43.3",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.43.3",
|
5 |
+
"pytorch": "2.4.0+cu118"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:790ae806f396f666042d9b0e126632f35d97a6f3b9421a5eb4aa1a9bafa63231
|
3 |
+
size 90864192
|
modules.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Dense",
|
18 |
+
"type": "sentence_transformers.models.Dense"
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"idx": 3,
|
22 |
+
"name": "3",
|
23 |
+
"path": "3_Dropout",
|
24 |
+
"type": "sentence_transformers.models.Dropout"
|
25 |
+
}
|
26 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 128,
|
50 |
+
"model_max_length": 256,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|