Jax-NCA / jax_nca /nca.py
shyamsn97
first commit
434b57f
import functools
from typing import Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax import serialization
from jax import lax
class SobelPerceptionNet(nn.Module):
@nn.compact
def __call__(self, x):
# x shape - BHWC
num_channels = x.shape[-1]
# 2D sobel kernels - IOHW layout
x_sobel_kernel = jnp.zeros(
(num_channels, num_channels, 3, 3), dtype=jnp.float32
)
x_sobel_kernel += (
jnp.array([[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], [-1.0, 0.0, 1.0]])[
jnp.newaxis, jnp.newaxis, :, :
]
/ 8.0
)
y_sobel_kernel = jnp.zeros(
(num_channels, num_channels, 3, 3), dtype=jnp.float32
)
y_sobel_kernel += (
jnp.array([[-1.0, -2.0, -1.0], [0.0, 0.0, 0.0], [1.0, 2.0, 1.0]])[
jnp.newaxis, jnp.newaxis, :, :
]
/ 8.0
)
x = jnp.transpose(x, [0, 3, 1, 2]) # N C H W
x_out = lax.conv(
x, # lhs = NCHW image tensor
x_sobel_kernel, # rhs = OIHW conv kernel tensor
(1, 1), # window strides
"SAME",
) # padding mode
y_out = lax.conv(
x, # lhs = NCHW image tensor
y_sobel_kernel, # rhs = OIHW conv kernel tensor
(1, 1), # window strides
"SAME",
) # padding mode
out = jnp.concatenate([x, x_out, y_out], axis=1)
return jnp.transpose(out, [0, 2, 3, 1]) # N H W C
class UpdateNet(nn.Module):
num_channels: int
@nn.compact
def __call__(self, x):
update_layer_1 = nn.Conv(
features=64, kernel_size=(1, 1), strides=1, padding="VALID"
)
update_layer_2 = nn.Conv(
features=64, kernel_size=(1, 1), strides=1, padding="VALID"
)
update_layer_3 = nn.Conv(
features=self.num_channels,
kernel_size=(1, 1),
strides=1,
padding="VALID",
kernel_init=jax.nn.initializers.zeros,
use_bias=False,
)
x = update_layer_1(x)
x = nn.relu(x)
x = update_layer_2(x)
x = nn.relu(x)
x = update_layer_3(x)
return x
class TrainablePerception(nn.Module):
num_channels: int
@nn.compact
def __call__(self, x):
out = nn.Conv(
features=self.num_channels * 3,
kernel_size=(3, 3),
use_bias=False,
feature_group_count=self.num_channels,
)(x)
return out
@functools.partial(jax.jit, static_argnames=("apply_fn", "num_steps"))
def nca_multi_step(apply_fn, params, current_state: jnp.array, rng, num_steps: int):
def forward(carry, inp):
carry = apply_fn({"params": params}, carry, rng)
return carry, carry
x, outs = jax.lax.scan(forward, current_state, None, length=num_steps)
return x, outs
class NCA(nn.Module):
num_hidden_channels: int
num_target_channels: int = 3
alpha_living_threshold: float = 0.1
cell_fire_rate: float = 1.0
trainable_perception: bool = False
alpha: float = 1.0
"""
num_hidden_channels: Number of hidden channels for each cell to use
num_target_channels: Number of target channels to be used
alpha_living_threshold: threshold to determine whether a cell lives or dies
cell_fire_rate: probability that a cell receives an update per step
trainable_perception: if true, instead of using sobel filters use a trainable conv net
alpha: scalar value to be multiplied to updates
"""
@classmethod
def create_seed(
cls,
num_hidden_channels: int,
num_target_channels: int = 3,
shape: Tuple[int] = (48, 48),
batch_size: int = 1,
):
seed = np.zeros((batch_size, *shape, num_hidden_channels + 3 + 1))
w, h = seed.shape[1], seed.shape[2]
seed[:, w // 2, h // 2, 3:] = 1.0
return seed
def setup(self):
num_channels = 3 + self.num_hidden_channels + 1
if self.trainable_perception:
self.perception = TrainablePerception(num_channels)
else:
self.perception = SobelPerceptionNet()
self.update_net = UpdateNet(num_channels)
def alive(self, x, alpha_living_threshold: float):
return (
nn.max_pool(
x[..., 3:4], window_shape=(3, 3), strides=(1, 1), padding="SAME"
)
> alpha_living_threshold
)
def get_stochastic_update_mask(self, x, rng, cell_fire_rate: float = 1.0):
return jnp.array(np.random.uniform(size=x[..., :1].shape) <= cell_fire_rate)
def __call__(self, x, rng):
pre_life_mask = self.alive(x, self.alpha_living_threshold)
perception_out = self.perception(x)
update = self.alpha * jnp.reshape(self.update_net(perception_out), x.shape)
if self.cell_fire_rate >= 1.0:
stochastic_update_mask = self.get_stochastic_update_mask(
x, rng, self.cell_fire_rate
).astype(float)
x = x + update * stochastic_update_mask
else:
x = x + update
post_life_mask = self.alive(x, self.alpha_living_threshold)
life_mask = pre_life_mask & post_life_mask
life_mask = life_mask.astype(float)
return x * life_mask
def save(self, params, path: str):
bytes_output = serialization.to_bytes(params)
with open(path, "wb") as f:
f.write(bytes_output)
def load(self, path: str):
nca_seed = self.create_seed(
self.num_hidden_channels, self.num_target_channels, batch_size=1
)
rng = jax.random.PRNGKey(0)
init_params = self.init(rng, nca_seed, rng)["params"]
with open(path, "rb") as f:
bytes_output = f.read()
return serialization.from_bytes(init_params, bytes_output)
def multi_step(self, params, current_state: jnp.array, rng, num_steps: int = 2):
return nca_multi_step(self.apply, params, current_state, rng, num_steps)
def to_rgb(self, x: jnp.array):
rgb, a = x[..., :3], jnp.clip(x[..., 3:4], 0.0, 1.0)
rgb = jnp.clip(1.0 - a + rgb, 0.0, 1.0)
return rgb