Upload AestheticsPredictorV2ReLU
Browse files- config.json +1 -1
- configuration_predictor.py +39 -0
- modeling_v2.py +138 -0
config.json
CHANGED
@@ -5,7 +5,7 @@
|
|
5 |
],
|
6 |
"attention_dropout": 0.0,
|
7 |
"auto_map": {
|
8 |
-
"AutoModel": "
|
9 |
},
|
10 |
"dropout": 0.0,
|
11 |
"hidden_act": "quick_gelu",
|
|
|
5 |
],
|
6 |
"attention_dropout": 0.0,
|
7 |
"auto_map": {
|
8 |
+
"AutoModel": "modeling_v2.AestheticsPredictorV2ReLU"
|
9 |
},
|
10 |
"dropout": 0.0,
|
11 |
"hidden_act": "quick_gelu",
|
configuration_predictor.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.models.clip.configuration_clip import CLIPVisionConfig
|
2 |
+
|
3 |
+
|
4 |
+
class AestheticsPredictorConfig(CLIPVisionConfig):
|
5 |
+
model_type = "aesthetics_predictor"
|
6 |
+
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
hidden_size: int = 768,
|
10 |
+
intermediate_size: int = 3072,
|
11 |
+
projection_dim: int = 512,
|
12 |
+
num_hidden_layers: int = 12,
|
13 |
+
num_attention_heads: int = 12,
|
14 |
+
num_channels: int = 3,
|
15 |
+
image_size: int = 224,
|
16 |
+
patch_size: int = 32,
|
17 |
+
hidden_act: str = "quick_gelu",
|
18 |
+
layer_norm_eps: float = 0.00001,
|
19 |
+
attention_dropout: float = 0,
|
20 |
+
initializer_range: float = 0.02,
|
21 |
+
initializer_factor: float = 1,
|
22 |
+
**kwargs,
|
23 |
+
):
|
24 |
+
super().__init__(
|
25 |
+
hidden_size,
|
26 |
+
intermediate_size,
|
27 |
+
projection_dim,
|
28 |
+
num_hidden_layers,
|
29 |
+
num_attention_heads,
|
30 |
+
num_channels,
|
31 |
+
image_size,
|
32 |
+
patch_size,
|
33 |
+
hidden_act,
|
34 |
+
layer_norm_eps,
|
35 |
+
attention_dropout,
|
36 |
+
initializer_range,
|
37 |
+
initializer_factor,
|
38 |
+
**kwargs,
|
39 |
+
)
|
modeling_v2.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from typing import Dict, Final, Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from transformers import CLIPVisionModelWithProjection, logging
|
7 |
+
from transformers.modeling_outputs import ImageClassifierOutputWithNoAttention
|
8 |
+
|
9 |
+
from .configuration_predictor import AestheticsPredictorConfig
|
10 |
+
|
11 |
+
logging.set_verbosity_error()
|
12 |
+
|
13 |
+
URLS_LINEAR: Final[Dict[str, str]] = {
|
14 |
+
"sac+logos+ava1-l14-linearMSE": "https://github.com/christophschuhmann/improved-aesthetic-predictor/raw/main/sac%2Blogos%2Bava1-l14-linearMSE.pth",
|
15 |
+
"ava+logos-l14-linearMSE": "https://github.com/christophschuhmann/improved-aesthetic-predictor/raw/main/ava%2Blogos-l14-linearMSE.pth",
|
16 |
+
}
|
17 |
+
|
18 |
+
|
19 |
+
URLS_RELU: Final[Dict[str, str]] = {
|
20 |
+
"ava+logos-l14-reluMSE": "https://github.com/christophschuhmann/improved-aesthetic-predictor/raw/main/ava%2Blogos-l14-reluMSE.pth",
|
21 |
+
}
|
22 |
+
|
23 |
+
|
24 |
+
class AestheticsPredictorV2Linear(CLIPVisionModelWithProjection):
|
25 |
+
def __init__(self, config: AestheticsPredictorConfig) -> None:
|
26 |
+
super().__init__(config)
|
27 |
+
self.layers = nn.Sequential(
|
28 |
+
nn.Linear(config.projection_dim, 1024),
|
29 |
+
nn.Dropout(0.2),
|
30 |
+
nn.Linear(1024, 128),
|
31 |
+
nn.Dropout(0.2),
|
32 |
+
nn.Linear(128, 64),
|
33 |
+
nn.Dropout(0.1),
|
34 |
+
nn.Linear(64, 16),
|
35 |
+
nn.Linear(16, 1),
|
36 |
+
)
|
37 |
+
self.post_init()
|
38 |
+
|
39 |
+
def forward(
|
40 |
+
self,
|
41 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
42 |
+
output_attentions: Optional[bool] = None,
|
43 |
+
output_hidden_states: Optional[bool] = None,
|
44 |
+
labels: Optional[torch.Tensor] = None,
|
45 |
+
return_dict: Optional[bool] = None,
|
46 |
+
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
|
47 |
+
return_dict = (
|
48 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
49 |
+
)
|
50 |
+
|
51 |
+
outputs = super().forward(
|
52 |
+
pixel_values=pixel_values,
|
53 |
+
output_attentions=output_attentions,
|
54 |
+
output_hidden_states=output_hidden_states,
|
55 |
+
return_dict=return_dict,
|
56 |
+
)
|
57 |
+
image_embeds = outputs[0] # image_embeds
|
58 |
+
image_embeds /= image_embeds.norm(dim=-1, keepdim=True)
|
59 |
+
|
60 |
+
prediction = self.layers(image_embeds)
|
61 |
+
|
62 |
+
loss = None
|
63 |
+
if labels is not None:
|
64 |
+
loss_fct = nn.MSELoss()
|
65 |
+
loss = loss_fct()
|
66 |
+
|
67 |
+
if not return_dict:
|
68 |
+
return (loss, prediction, image_embeds)
|
69 |
+
|
70 |
+
return ImageClassifierOutputWithNoAttention(
|
71 |
+
loss=loss,
|
72 |
+
logits=prediction,
|
73 |
+
hidden_states=image_embeds,
|
74 |
+
)
|
75 |
+
|
76 |
+
|
77 |
+
class AestheticsPredictorV2ReLU(AestheticsPredictorV2Linear):
|
78 |
+
def __init__(self, config: AestheticsPredictorConfig) -> None:
|
79 |
+
super().__init__(config)
|
80 |
+
self.layers = nn.Sequential(
|
81 |
+
nn.Linear(config.projection_dim, 1024),
|
82 |
+
nn.ReLU(),
|
83 |
+
nn.Dropout(0.2),
|
84 |
+
nn.Linear(1024, 128),
|
85 |
+
nn.ReLU(),
|
86 |
+
nn.Dropout(0.2),
|
87 |
+
nn.Linear(128, 64),
|
88 |
+
nn.ReLU(),
|
89 |
+
nn.Dropout(0.1),
|
90 |
+
nn.Linear(64, 16),
|
91 |
+
nn.ReLU(),
|
92 |
+
nn.Linear(16, 1),
|
93 |
+
)
|
94 |
+
self.post_init()
|
95 |
+
|
96 |
+
|
97 |
+
def convert_v2_linear_from_openai_clip(
|
98 |
+
predictor_head_name: str,
|
99 |
+
openai_model_name: str = "openai/clip-vit-large-patch14",
|
100 |
+
) -> AestheticsPredictorV2Linear:
|
101 |
+
model = AestheticsPredictorV2Linear.from_pretrained(openai_model_name)
|
102 |
+
|
103 |
+
state_dict = torch.hub.load_state_dict_from_url(
|
104 |
+
URLS_LINEAR[predictor_head_name], map_location="cpu"
|
105 |
+
)
|
106 |
+
assert isinstance(state_dict, OrderedDict)
|
107 |
+
|
108 |
+
# remove `layers.` from the key of the state_dict
|
109 |
+
state_dict = OrderedDict(
|
110 |
+
((k.replace("layers.", ""), v) for k, v in state_dict.items())
|
111 |
+
)
|
112 |
+
model.layers.load_state_dict(state_dict)
|
113 |
+
|
114 |
+
model.eval()
|
115 |
+
|
116 |
+
return model
|
117 |
+
|
118 |
+
|
119 |
+
def convert_v2_relu_from_openai_clip(
|
120 |
+
predictor_head_name: str,
|
121 |
+
openai_model_name: str = "openai/clip-vit-large-patch14",
|
122 |
+
) -> AestheticsPredictorV2ReLU:
|
123 |
+
model = AestheticsPredictorV2ReLU.from_pretrained(openai_model_name)
|
124 |
+
|
125 |
+
state_dict = torch.hub.load_state_dict_from_url(
|
126 |
+
URLS_RELU[predictor_head_name], map_location="cpu"
|
127 |
+
)
|
128 |
+
assert isinstance(state_dict, OrderedDict)
|
129 |
+
|
130 |
+
# remove `layers.` from the key of the state_dict
|
131 |
+
state_dict = OrderedDict(
|
132 |
+
((k.replace("layers.", ""), v) for k, v in state_dict.items())
|
133 |
+
)
|
134 |
+
model.layers.load_state_dict(state_dict)
|
135 |
+
|
136 |
+
model.eval()
|
137 |
+
|
138 |
+
return model
|