Upload AestheticsPredictorV2Linear
Browse files- config.json +2 -2
- modeling_v2.py +12 -2
config.json
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "openai/clip-vit-large-patch14",
|
3 |
"architectures": [
|
4 |
"AestheticsPredictorV2Linear"
|
5 |
],
|
6 |
"attention_dropout": 0.0,
|
7 |
"auto_map": {
|
|
|
8 |
"AutoModel": "modeling_v2.AestheticsPredictorV2Linear"
|
9 |
},
|
10 |
"dropout": 0.0,
|
@@ -15,7 +15,7 @@
|
|
15 |
"initializer_range": 0.02,
|
16 |
"intermediate_size": 4096,
|
17 |
"layer_norm_eps": 1e-05,
|
18 |
-
"model_type": "
|
19 |
"num_attention_heads": 16,
|
20 |
"num_channels": 3,
|
21 |
"num_hidden_layers": 24,
|
|
|
1 |
{
|
|
|
2 |
"architectures": [
|
3 |
"AestheticsPredictorV2Linear"
|
4 |
],
|
5 |
"attention_dropout": 0.0,
|
6 |
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_predictor.AestheticsPredictorConfig",
|
8 |
"AutoModel": "modeling_v2.AestheticsPredictorV2Linear"
|
9 |
},
|
10 |
"dropout": 0.0,
|
|
|
15 |
"initializer_range": 0.02,
|
16 |
"intermediate_size": 4096,
|
17 |
"layer_norm_eps": 1e-05,
|
18 |
+
"model_type": "aesthetics_predictor",
|
19 |
"num_attention_heads": 16,
|
20 |
"num_channels": 3,
|
21 |
"num_hidden_layers": 24,
|
modeling_v2.py
CHANGED
@@ -97,8 +97,13 @@ class AestheticsPredictorV2ReLU(AestheticsPredictorV2Linear):
|
|
97 |
def convert_v2_linear_from_openai_clip(
|
98 |
predictor_head_name: str,
|
99 |
openai_model_name: str = "openai/clip-vit-large-patch14",
|
|
|
100 |
) -> AestheticsPredictorV2Linear:
|
101 |
-
|
|
|
|
|
|
|
|
|
102 |
|
103 |
state_dict = torch.hub.load_state_dict_from_url(
|
104 |
URLS_LINEAR[predictor_head_name], map_location="cpu"
|
@@ -119,8 +124,13 @@ def convert_v2_linear_from_openai_clip(
|
|
119 |
def convert_v2_relu_from_openai_clip(
|
120 |
predictor_head_name: str,
|
121 |
openai_model_name: str = "openai/clip-vit-large-patch14",
|
|
|
122 |
) -> AestheticsPredictorV2ReLU:
|
123 |
-
|
|
|
|
|
|
|
|
|
124 |
|
125 |
state_dict = torch.hub.load_state_dict_from_url(
|
126 |
URLS_RELU[predictor_head_name], map_location="cpu"
|
|
|
97 |
def convert_v2_linear_from_openai_clip(
|
98 |
predictor_head_name: str,
|
99 |
openai_model_name: str = "openai/clip-vit-large-patch14",
|
100 |
+
config: Optional[AestheticsPredictorConfig] = None,
|
101 |
) -> AestheticsPredictorV2Linear:
|
102 |
+
config = config or AestheticsPredictorConfig.from_pretrained(openai_model_name)
|
103 |
+
model = AestheticsPredictorV2Linear(config)
|
104 |
+
|
105 |
+
clip_model = CLIPVisionModelWithProjection.from_pretrained(openai_model_name)
|
106 |
+
model.load_state_dict(clip_model.state_dict(), strict=False)
|
107 |
|
108 |
state_dict = torch.hub.load_state_dict_from_url(
|
109 |
URLS_LINEAR[predictor_head_name], map_location="cpu"
|
|
|
124 |
def convert_v2_relu_from_openai_clip(
|
125 |
predictor_head_name: str,
|
126 |
openai_model_name: str = "openai/clip-vit-large-patch14",
|
127 |
+
config: Optional[AestheticsPredictorConfig] = None,
|
128 |
) -> AestheticsPredictorV2ReLU:
|
129 |
+
config = config or AestheticsPredictorConfig.from_pretrained(openai_model_name)
|
130 |
+
model = AestheticsPredictorV2ReLU(config)
|
131 |
+
|
132 |
+
clip_model = CLIPVisionModelWithProjection.from_pretrained(openai_model_name)
|
133 |
+
model.load_state_dict(clip_model.state_dict(), strict=False)
|
134 |
|
135 |
state_dict = torch.hub.load_state_dict_from_url(
|
136 |
URLS_RELU[predictor_head_name], map_location="cpu"
|