shujunge commited on
Commit
7ba4f14
1 Parent(s): 3fb9f67

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - food101
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: vit-base-patch16-224-in21k-finetuned-lora-food101
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # vit-base-patch16-224-in21k-finetuned-lora-food101
18
+
19
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 4.0652
22
+ - Accuracy: 0.74
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 0.0005
42
+ - train_batch_size: 128
43
+ - eval_batch_size: 128
44
+ - seed: 42
45
+ - gradient_accumulation_steps: 4
46
+ - total_train_batch_size: 512
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 2
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
56
+ | No log | 1.0 | 9 | 4.2354 | 0.64 |
57
+ | 4.4352 | 2.0 | 18 | 4.0652 | 0.74 |
58
+
59
+
60
+ ### Framework versions
61
+
62
+ - Transformers 4.29.2
63
+ - Pytorch 2.0.0
64
+ - Datasets 2.1.0
65
+ - Tokenizers 0.13.3