shubhamagarwal92 commited on
Commit
10a16dd
1 Parent(s): 12eefe6

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
- value: 666.12 +/- 262.55
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
+ value: 1457.50 +/- 109.67
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-AntBulletEnv-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2529dc1f25aab13502bd7886532422df4b4004c70def2f0b9d3953b694427909
3
  size 129247
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b1609f28ecfcdb86c3ef3415b270bba1f63293dc2b9b76d74350a1710ca6c57
3
  size 129247
a2c-AntBulletEnv-v0/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7a47bd833a30>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a47bd833ac0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a47bd833b50>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a47bd833be0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7a47bd833c70>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7a47bd833d00>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a47bd833d90>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a47bd833e20>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7a47bd833eb0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a47bd833f40>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a47bd840040>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a47bd8400d0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7a47c6a84280>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
@@ -32,12 +32,12 @@
32
  "weight_decay": 0
33
  }
34
  },
35
- "num_timesteps": 2000000,
36
- "_total_timesteps": 2000000,
37
  "_num_timesteps_at_start": 0,
38
  "seed": null,
39
  "action_noise": null,
40
- "start_time": 1691302128564887223,
41
  "learning_rate": 0.00096,
42
  "tensorboard_log": null,
43
  "lr_schedule": {
@@ -46,7 +46,7 @@
46
  },
47
  "_last_obs": {
48
  ":type:": "<class 'numpy.ndarray'>",
49
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAK7mEkBQQcU+E8i5PkOxG0DOkkq/z6flPqFS8b+QvALA45P8Prc2H75IGcY/BGeMv0SS7r4XSDI/ybgGPxG1jD+Vfqe/iWI4Pz+lV78vn7299LIivsz1f78eNpW+H2i8P65+nb9K6Bc/GA05wE6Hlb9IAZ8/owtRPzxPID2BcbI/k5i6P7G8UDzukMm+KDg7vxLJBD93umBAfOuIP+pGHz+Qjo2/mP+sPNcWu76hP5I/EoSBP+cXh79VYqm/STAgQBftKz+CfydAsx5SvxPNaj2/DlA/27XXv0oTsT5Oh5W/AvO2PdNDXz2thgE//IaIPj9H3b+uIRDArhG0v1TEMz/S10e/r364Pp4gL7/Hd8Y/4XEDQG4lDr8Vij2+6YVFQMOlJL+6xV4/hWXMvxealz8gjxG/Wzo5PlXhiD+x50a+rn6dv0roFz9KE7E+YSRbPya2+r6koMw+0Zu1PqmXEr4gTdq/BfG+Pg20Ar+lB0e/h7V9PgZ7Tb8ILOu+utb+v3hQj7/gFAQ9agcpP0fgYj/L7Eo/0Nf1PaayWD4GFM+/kua2vh9QO78obR0/5ao9P65+nb9K6Bc/ShOxPk6Hlb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
  },
51
  "_last_episode_starts": {
52
  ":type:": "<class 'numpy.ndarray'>",
@@ -54,7 +54,7 @@
54
  },
55
  "_last_original_obs": {
56
  ":type:": "<class 'numpy.ndarray'>",
57
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADru/+0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgFB6PQAAAABSdvW/AAAAAKXP0rwAAAAA+An8PwAAAADRERS9AAAAADXO6D8AAAAApEvVvQAAAABree6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAchi2NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKztiz0AAAAAM4v7vwAAAAB268E9AAAAALU98z8AAAAADjuOvQAAAAAOpPI/AAAAALTyzr0AAAAAhC/rvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH/WQbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB5gZ09AAAAABY5978AAAAAd1gEPQAAAAAy5OM/AAAAAFqxVL0AAAAA10QAQAAAAAAOpYe9AAAAAAtC778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADY3hq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQPlSvQAAAACtrNm/AAAAAJyV2r0AAAAAqMHpPwAAAABPDv29AAAAAJk88j8AAAAAZBKnvQAAAAAWE96/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
  },
59
  "_episode_num": 0,
60
  "use_sde": true,
@@ -63,13 +63,13 @@
63
  "_stats_window_size": 100,
64
  "ep_info_buffer": {
65
  ":type:": "<class 'collections.deque'>",
66
- ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJwK6JVKf4CMAWyUTegDjAF0lEdAqaCXWSU1RHV9lChoBkdAnegE/wAlwGgHTegDaAhHQKmsG4G2TgV1fZQoaAZHQJ0WTJT2nKpoB03oA2gIR0CprCDSG8EndX2UKGgGR0Cd3G0th/iHaAdN6ANoCEdAqa2xVjqfOHV9lChoBkdAna7p7w8W9GgHTegDaAhHQKmu55Pdl/Z1fZQoaAZHQJ06TleWv8toB03oA2gIR0CpuDJ2t+1CdX2UKGgGR0CC5kaQ3gk1aAdN6ANoCEdAqbg4mNR3vHV9lChoBkdAmzqMNQTEi2gHTegDaAhHQKm5xEmY0EZ1fZQoaAZHQJfxumygPEtoB03oA2gIR0CpuvseXAuadX2UKGgGR0CCYuvkBCD3aAdN6ANoCEdAqcaqkM1CPnV9lChoBkdAmk0MLF4s3GgHTegDaAhHQKnGsAR02cd1fZQoaAZHQJw278VHnU5oB03oA2gIR0CpyEUD+zdDdX2UKGgGR0CZLFGYKIBSaAdN6ANoCEdAqcmBYeT3ZnV9lChoBkdAl3jr+1jRUmgHTegDaAhHQKnS/qGlANZ1fZQoaAZHQJrew4GUwBZoB03oA2gIR0Cp0wQCr92pdX2UKGgGR0Cd8vVpKzzFaAdN6ANoCEdAqdSbPdEb53V9lChoBkdAm0fTbnHNo2gHTegDaAhHQKnVx5eqrBF1fZQoaAZHQJ6G3VlPJq9oB03oA2gIR0Cp4St8NQTFdX2UKGgGR0CcMwBPsRg7aAdN6ANoCEdAqeExGQSzxHV9lChoBkdAlsRpLVWjoWgHTegDaAhHQKniwImgJ1J1fZQoaAZHQJ5VFEDyOJdoB03oA2gIR0Cp4/DmCAc1dX2UKGgGR0CcLNgPEsJ6aAdN6ANoCEdAqe0lAVwgknV9lChoBkdAnKVwGW2PUGgHTegDaAhHQKntKqbSZ0F1fZQoaAZHQJyHtEv0yxloB03oA2gIR0Cp7rkRSP2gdX2UKGgGR0CdDJZ2IO6NaAdN6ANoCEdAqe/pLRKHwnV9lChoBkdAnWvvHHWBjGgHTegDaAhHQKn7STkhib51fZQoaAZHQJ3KiBpYcNpoB03oA2gIR0Cp+1AqVhTgdX2UKGgGR0CW0UWNWEK3aAdN6ANoCEdAqfzd+1Bt13V9lChoBkdAnXfQtvn8sWgHTegDaAhHQKn+DJWeYlZ1fZQoaAZHQJs01lar3kBoB03oA2gIR0CqByxZuAI6dX2UKGgGR0Cc5lhq0tyxaAdN6ANoCEdAqgcyGlANX3V9lChoBkdAmMgfoFFDv2gHTegDaAhHQKoIwypJf6Z1fZQoaAZHQJsoZxVAAyVoB03oA2gIR0CqCe+t0V8DdX2UKGgGR0CfyLpOvdM1aAdN6ANoCEdAqhVjSCvovHV9lChoBkdAndol/pdKNGgHTegDaAhHQKoVa3wTdtV1fZQoaAZHQJz1vNMXaaloB03oA2gIR0CqFx+8f3evdX2UKGgGR0Ce/0oQ4CIUaAdN6ANoCEdAqhhT+5vtMXV9lChoBkdAltriiZfD12gHTegDaAhHQKohaegctGx1fZQoaAZHQJwpfWMCLdhoB03oA2gIR0CqIW9mQKa5dX2UKGgGR0CbcbCD28IzaAdN6ANoCEdAqiMB91EE1XV9lChoBkdAmZm0mD15B2gHTegDaAhHQKokK9IPK+11fZQoaAZHQJDaeyyD7IloB03oA2gIR0CqL30iQkondX2UKGgGR0CRuWyI55quaAdN6ANoCEdAqi+G65Gz8nV9lChoBkdAgxCJF9a2W2gHTegDaAhHQKoxenZ00WN1fZQoaAZHQJcgS3UhFE1oB03oA2gIR0CqMqbVBlcydX2UKGgGR0Ca8g7g88s+aAdN6ANoCEdAqjv/qC6H03V9lChoBkdAmsfR3A2ycGgHTegDaAhHQKo8BSEUTL51fZQoaAZHQJj7mlzltCRoB03oA2gIR0CqPZnDaXa8dX2UKGgGR0CXGik9lmOEaAdN6ANoCEdAqj7KxZ+x4nV9lChoBkdAmpYQQUYbbWgHTegDaAhHQKpJw8TSLIh1fZQoaAZHQJkZMrZrYXhoB03oA2gIR0CqScx15jYqdX2UKGgGR0CdSkFG5MDfaAdN6ANoCEdAqkv7ZFocrHV9lChoBkdAnR0k5IYm9mgHTegDaAhHQKpNMfHPu5V1fZQoaAZHQJ2MOVGCqZNoB03oA2gIR0CqVpFSsKb8dX2UKGgGR0Cc+dOUMXrMaAdN6ANoCEdAqlaXCj1wpHV9lChoBkdAmmfHYlIEsGgHTegDaAhHQKpYMuTzNEB1fZQoaAZHQJvPRKcurZJoB03oA2gIR0CqWWURvm5ldX2UKGgGR0CRk7CCjDbbaAdN6ANoCEdAqmReV3Ux23V9lChoBkdAnipGNrCWNWgHTegDaAhHQKpkZpMYdhl1fZQoaAZHQJqCgEfT1ChoB03oA2gIR0CqZp5Dqnm8dX2UKGgGR0CbEuRFqi48aAdN6ANoCEdAqmfCOYIBzXV9lChoBkdAmZHTg/C66WgHTegDaAhHQKpw41stTUB1fZQoaAZHQJvVXZsbedloB03oA2gIR0CqcOitzS1FdX2UKGgGR0CcS5S3b212aAdN6ANoCEdAqnJ0xsVLz3V9lChoBkdAm9sAe/5+IGgHTegDaAhHQKpzmgEEC/51fZQoaAZHQJvD10FKTStoB03oA2gIR0CqffBxgiNbdX2UKGgGR0CYJpBRQ79yaAdN6ANoCEdAqn34JJGvwHV9lChoBkdAmUp0rkKeCmgHTegDaAhHQKqAVOrQw9J1fZQoaAZHQJyr39uP3i9oB03oA2gIR0Cqgbe54GD+dX2UKGgGR0CdCQdat9x7aAdN6ANoCEdAqoqueQMhHXV9lChoBkdAnikmBnSOR2gHTegDaAhHQKqKs8dxQzl1fZQoaAZHQJ24H8TBZZBoB03oA2gIR0CqjFxO+IuXdX2UKGgGR0Ccy+IuoP07aAdN6ANoCEdAqo2LF2mpEXV9lChoBkdAnIUfI0ZWJmgHTegDaAhHQKqXgMG5c1R1fZQoaAZHQJmXvV8Ti85oB03oA2gIR0Cql4iA2AG0dX2UKGgGR0CcV2y3Td+HaAdN6ANoCEdAqpnR80DU3HV9lChoBkdAmrVELUkOZ2gHTegDaAhHQKqbk8/Uvwp1fZQoaAZHQJg/dhuwX69oB03oA2gIR0CqpLZ88cMmdX2UKGgGR0CcDPAUL2HtaAdN6ANoCEdAqqS73qRlpXV9lChoBkdAnIOPcN6PbWgHTegDaAhHQKqmSC2c8T11fZQoaAZHQJzulSl3yI5oB03oA2gIR0Cqp4VB+nZTdX2UKGgGR0CZ65GoJiRXaAdN6ANoCEdAqrFLt3OfNHV9lChoBkdAnWRaKcd5p2gHTegDaAhHQKqxVKCg9Nh1fZQoaAZHQJvM7A44p+doB03oA2gIR0Cqs5yAH3UQdX2UKGgGR0CVJrlImPYGaAdN6ANoCEdAqrVtTHbRGHV9lChoBkdAmX2vr8iwCGgHTegDaAhHQKq/G9Zid8R1fZQoaAZHQJ9cA1vVEuxoB03oA2gIR0CqvyFSKm8/dX2UKGgGR0CcJRC3w1BMaAdN6ANoCEdAqsCwGD+R5nV9lChoBkdAnRrHtjTa02gHTegDaAhHQKrB2VUuL751fZQoaAZHQJvxLlS0jTtoB03oA2gIR0Cqy2EfDDTCdX2UKGgGR0CfYOOWjXWfaAdN6ANoCEdAqstpAGB4EHV9lChoBkdAm+J0AxSHd2gHTegDaAhHQKrNvMOf/WF1fZQoaAZHQJ0DEm2LHdZoB03oA2gIR0Cqz5PQfIS2dX2UKGgGR0CDpCMyad+YaAdN6ANoCEdAqtln6uW8iHV9lChoBkdAnNZGCiAUcmgHTegDaAhHQKrZbWJ79ht1fZQoaAZHQIzxXUhFEzBoB03oA2gIR0Cq2vXNTtLMdX2UKGgGR0CboZiExqO+aAdN6ANoCEdAqtwkrK/203V9lChoBkdAjJr+/pMYdmgHTegDaAhHQKrlZ7OVxCJ1fZQoaAZHQJIxIXhwVCZoB03oA2gIR0Cq5W+B6KLsdX2UKGgGR0CKcD03fhuPaAdN6ANoCEdAque3nyNGVnVlLg=="
67
  },
68
  "ep_success_buffer": {
69
  ":type:": "<class 'collections.deque'>",
70
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
  },
72
- "_n_updates": 62500,
73
  "n_steps": 8,
74
  "gamma": 0.99,
75
  "gae_lambda": 0.9,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7a6ec80a7010>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a6ec80a70a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a6ec80a7130>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a6ec80a71c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7a6ec80a7250>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7a6ec80a72e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a6ec80a7370>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a6ec80a7400>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7a6ec80a7490>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a6ec80a7520>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a6ec80a75b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a6ec80a7640>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7a6ec80a9500>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
 
32
  "weight_decay": 0
33
  }
34
  },
35
+ "num_timesteps": 3000000,
36
+ "_total_timesteps": 3000000,
37
  "_num_timesteps_at_start": 0,
38
  "seed": null,
39
  "action_noise": null,
40
+ "start_time": 1691373477251343233,
41
  "learning_rate": 0.00096,
42
  "tensorboard_log": null,
43
  "lr_schedule": {
 
46
  },
47
  "_last_obs": {
48
  ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANebzz7PxjE/1VE+vuYyWb3xtD4/bwJiPwpBnz738j+/+qJNP9+Rfb6fYEU/9SXcv3BX2L4PH/c+Z7PYvk1qg74CmT8+PR8ePj9+Ej+FMok8MYGUPx/ER7+Fj5c/kLl9u+3nX78GQyg/leK2PqpxAD/NDuW/8I0lvgyMID/qadG+S/aYPmxnCD3MzyC/ShpiP1aRJL4cFsY+LBVqvxbGND/bN54+mzUGPyW5Tz+q9XC+q/GwP8TqkT/5WyU+R9XMP8Aqe79rVEQ/3V16v4LXBcDfWJI/BkMoP5Xitj6qcQA/WOQTv2m+Tb4dYyY/1WOlPeYgPT8fWgI/56epvo10Mr+8P3g/bMXZvlVZzD50uZ4+Y8stP9LpIT/nLHk/iSwRvz+MfD9XM/084nAYPwpTXr4Y04q/LME/Pd/SR77PHzy/31iSPwZDKD+V4rY+qnEAP9MCeD4WA10/z7v1vuCWvLxC00g/k1mYP1xtKD5Cz0G/kKpUP+aEvL7oZuM/3Xx/v4ebeL9bBsC++RvivkDfRb55V94+HjDTv00PEz8Q+wQ8TUAWP31vAsBPk0w//P60Pt9Ykj8GQyg/leK2PqpxAD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
  },
51
  "_last_episode_starts": {
52
  ":type:": "<class 'numpy.ndarray'>",
 
54
  },
55
  "_last_original_obs": {
56
  ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABA13g2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAeaTtvQAAAACCG/q/AAAAAMd+V70AAAAAR4EAQAAAAABOFh+9AAAAAAT6/T8AAAAAQ0kLvgAAAABw8vq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAczUBNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgC6Yrb0AAAAAE4bivwAAAACqIwW+AAAAAOh93j8AAAAADIAevAAAAADXou8/AAAAAK1SUL0AAAAAaO3wvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFYvlDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC4nZS9AAAAALaH6b8AAAAA9Ca8OwAAAAB7bPI/AAAAAPcNjLwAAAAAdY/ePwAAAADmuQq+AAAAAJet3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB98L01AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARfT9vAAAAADevfu/AAAAAFWJBr4AAAAAR5r+PwAAAADp6Mo9AAAAAHE3+T8AAAAARt10vQAAAABUid6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
  },
59
  "_episode_num": 0,
60
  "use_sde": true,
 
63
  "_stats_window_size": 100,
64
  "ep_info_buffer": {
65
  ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJMGDnMdLg6MAWyUTegDjAF0lEdAtGqdh3JPqXV9lChoBkdAlJbYAbQ1JmgHTegDaAhHQLRs+EfT1Ch1fZQoaAZHQJKW2uRs/INoB03oA2gIR0C0bl5ZB9kSdX2UKGgGR0CTEkYI0IkaaAdN6ANoCEdAtHEsJWvKU3V9lChoBkdAk4llmnO0LWgHTegDaAhHQLRyI4Fiay91fZQoaAZHQJO91DArQPZoB03oA2gIR0C0dBDFQ2uQdX2UKGgGR0CTqvky1uzhaAdN6ANoCEdAtHUFlvqC6HV9lChoBkdAlUPmEoOQQ2gHTegDaAhHQLR3huy/sVt1fZQoaAZHQJZupO1v2oNoB03oA2gIR0C0eIFYuCf6dX2UKGgGR0CThZe67NB4aAdN6ANoCEdAtHr+O6unuXV9lChoBkdAlMRHgLqlg2gHTegDaAhHQLR8bcawUxp1fZQoaAZHQJOmC2RaHKxoB03oA2gIR0C0fvyuZCv6dX2UKGgGR0CTlJ0PpY9xaAdN6ANoCEdAtH/z101ZT3V9lChoBkdAj83J17pmmWgHTegDaAhHQLSB7RHPNV11fZQoaAZHQJFCe5Etuk1oB03oA2gIR0C0gucqBmPHdX2UKGgGR0CTx0abF0gbaAdN6ANoCEdAtIVn2Dg62nV9lChoBkdAk32VX3g1nGgHTegDaAhHQLSGYe8PFvR1fZQoaAZHQJK2fspobn5oB03oA2gIR0C0iQt03fhudX2UKGgGR0CTPAUCJXQuaAdN6ANoCEdAtIpbLB9Cu3V9lChoBkdAlIba2jO9nWgHTegDaAhHQLSM7SHuZ1F1fZQoaAZHQJN1/pdKNAFoB03oA2gIR0C0jeqN2ki2dX2UKGgGR0CUEsx9G7SRaAdN6ANoCEdAtI/WziS7oXV9lChoBkdAk9e8otthu2gHTegDaAhHQLSQymmce8x1fZQoaAZHQJUnxWyTpxFoB03oA2gIR0C0k0rnTy8SdX2UKGgGR0CU29ZR8+ibaAdN6ANoCEdAtJRbPLPldXV9lChoBkdAk+4h9w3o92gHTegDaAhHQLSXRBczImx1fZQoaAZHQJc4yVcD8tRoB03oA2gIR0C0mFmdy1eCdX2UKGgGR0CWH5TI/7iyaAdN6ANoCEdAtJrkcS5AhXV9lChoBkdAlr8cXN1QqWgHTegDaAhHQLSb65Gz8gp1fZQoaAZHQJaCjThHbypoB03oA2gIR0C0ndwiqyWzdX2UKGgGR0CUDQBHkLhKaAdN6ANoCEdAtJ7IinpB5XV9lChoBkdAlJ6hhlUZN2gHTegDaAhHQLShWvYe1a51fZQoaAZHQJePwHs1KoRoB03oA2gIR0C0oqOQU5+6dX2UKGgGR0CUVdAymALBaAdN6ANoCEdAtKVl/2Cd0HV9lChoBkdAk4qEg4ffXWgHTegDaAhHQLSmVFspG4J1fZQoaAZHQJazuq+8Gs5oB03oA2gIR0C0qNje9Ba+dX2UKGgGR0CV/y76YVqOaAdN6ANoCEdAtKnRvVEux3V9lChoBkdAldXsVk+X7mgHTegDaAhHQLSrvONo8IR1fZQoaAZHQJacSWzF+/hoB03oA2gIR0C0rK2yPdVOdX2UKGgGR0CW43BnBciXaAdN6ANoCEdAtK8d8G9pRHV9lChoBkdAlO4/szEaVGgHTegDaAhHQLSwiEL6UJR1fZQoaAZHQJVv31+RYA9oB03oA2gIR0C0sykw35vcdX2UKGgGR0CUFY717IDHaAdN6ANoCEdAtLQUJfICEHV9lChoBkdAldioc3l0YGgHTegDaAhHQLS2kWxhUip1fZQoaAZHQJTZnOC5EtxoB03oA2gIR0C0t4rcXWOIdX2UKGgGR0CWTg1oQFs6aAdN6ANoCEdAtLl0IcBEKHV9lChoBkdAlJX4X0oSc2gHTegDaAhHQLS6YkCmuT11fZQoaAZHQJO1reqJdjZoB03oA2gIR0C0vPkLc9GJdX2UKGgGR0CThXK4x1xLaAdN6ANoCEdAtL5pqHoHLXV9lChoBkdAlENlv2oNu2gHTegDaAhHQLTA9/yoXKt1fZQoaAZHQJPYNYcNpdtoB03oA2gIR0C0weRQFcIJdX2UKGgGR0CWmc36AOJ+aAdN6ANoCEdAtMRk/W1+iXV9lChoBkdAl/sPcafjCGgHTegDaAhHQLTFY/CqIad1fZQoaAZHQJi29xjriVBoB03oA2gIR0C0x1Yoy9EkdX2UKGgGR0CXtzG/N7jUaAdN6ANoCEdAtMhJ1SwW33V9lChoBkdAlTShGtp22WgHTegDaAhHQLTLCKVII4V1fZQoaAZHQJeJRiPQv6FoB03oA2gIR0C0zHnn6l+FdX2UKGgGR0CUx9BfKISEaAdN6ANoCEdAtM7MyckMTnV9lChoBkdAlFkIo3JgcGgHTegDaAhHQLTPt5q/M4d1fZQoaAZHQJbYINb1RLtoB03oA2gIR0C00jGa2F37dX2UKGgGR0CWnOvIfbKzaAdN6ANoCEdAtNMwkIHC43V9lChoBkdAluzYJRfnfWgHTegDaAhHQLTVHh/y5I91fZQoaAZHQJnp+vr4WUNoB03oA2gIR0C01gtzfaYedX2UKGgGR0CW27GnGbTdaAdN6ANoCEdAtNkOrLhaT3V9lChoBkdAl2GlINEw4GgHTegDaAhHQLTahDUVi4J1fZQoaAZHQJS9BB3Roh9oB03oA2gIR0C03KzQZ4wAdX2UKGgGR0CWE3BMzuWsaAdN6ANoCEdAtN2ZXS0BwXV9lChoBkdAlkGnI6r/82gHTegDaAhHQLTgGfyf+S91fZQoaAZHQJR1TR4QjD9oB03oA2gIR0C04Q/3i704dX2UKGgGR0CUErTWoWHlaAdN6ANoCEdAtOL+d/axo3V9lChoBkdAlTbieAd4mmgHTegDaAhHQLTj7FtsN2F1fZQoaAZHQJUEc580DU5oB03oA2gIR0C05vvGuLaVdX2UKGgGR0CW7fa5f+juaAdN6ANoCEdAtOh0NEw353V9lChoBkdAmMZsHbAUL2gHTegDaAhHQLTqYnssxwh1fZQoaAZHQJYDPQ1JlJ9oB03oA2gIR0C0601h9b5edX2UKGgGR0CWfWECeVcEaAdN6ANoCEdAtO3BschkiHV9lChoBkdAlax93GGVRmgHTegDaAhHQLTuuuq3mV91fZQoaAZHQJZTfdJrcj9oB03oA2gIR0C08KODSPU8dX2UKGgGR0CVtvQswtaqaAdN6ANoCEdAtPGabnX/YXV9lChoBkdAmLce6unuRmgHTegDaAhHQLT0xY1pCa91fZQoaAZHQJF0/+Lm6oVoB03oA2gIR0C09jPEjxCqdX2UKGgGR0CTK6W+49X+aAdN6ANoCEdAtPgY0elsQHV9lChoBkdAlSv3JxNqQGgHTegDaAhHQLT5AVQAMlV1fZQoaAZHQJZg11nuiN9oB03oA2gIR0C0+4J4wAU+dX2UKGgGR0CSsvlSjxkNaAdN6ANoCEdAtPyFNi6QNnV9lChoBkdAjOWHpr1ui2gHTegDaAhHQLT+cm7rcCZ1fZQoaAZHQIhZ9IVdonNoB03oA2gIR0C0/2Ogg5imdX2UKGgGR0CW5aXhfjS5aAdN6ANoCEdAtQK+CJ40M3V9lChoBkdAj9Q95yEL6WgHTegDaAhHQLUEAiSq2jR1fZQoaAZHQJTXe1mapgloB03oA2gIR0C1BffdM0xedX2UKGgGR0CAU9Sx7iQ1aAdN6ANoCEdAtQbnhAGB4HV9lChoBkdAkvVAY+B6KWgHTegDaAhHQLUJYCeVcD91fZQoaAZHQJkqgQ4CIUJoB03oA2gIR0C1CmMfNiYtdX2UKGgGR0CRTrQemvW6aAdN6ANoCEdAtQxTh4t6HHV9lChoBkdAlxoGMwUQCmgHTegDaAhHQLUNScdYGMZ1fZQoaAZHQJbOVA3T/hloB03oA2gIR0C1EOh3JPqLdX2UKGgGR0CVgsdtEXtTaAdN6ANoCEdAtRH8Kb8WK3V9lChoBkdAlfEW4y44ImgHTegDaAhHQLUT+c+qzZ91fZQoaAZHQJRJlPykKu1oB03oA2gIR0C1FPUDZDiPdX2UKGgGR0CU+aswtapxaAdN6ANoCEdAtRd9o9LYgHVlLg=="
67
  },
68
  "ep_success_buffer": {
69
  ":type:": "<class 'collections.deque'>",
70
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
  },
72
+ "_n_updates": 93750,
73
  "n_steps": 8,
74
  "gamma": 0.99,
75
  "gae_lambda": 0.9,
a2c-AntBulletEnv-v0/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3b86418baf0230a66309f59869a5f73976cf534d0c0b76d8963db361a2972119
3
  size 56190
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eca276049dc10aa258432feb245c1a5e6017cc75e98739ec627fb95dcd913308
3
  size 56190
a2c-AntBulletEnv-v0/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0757370df4cf2dfe9d1127604f74bbf8a7b942928eef85d2d017d972110c388b
3
  size 56894
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29fad1a45452328e13a851278f168159bb8bb61e5db900caeb03e1e45235554e
3
  size 56894
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a47bd833a30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a47bd833ac0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a47bd833b50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a47bd833be0>", "_build": "<function ActorCriticPolicy._build at 0x7a47bd833c70>", "forward": "<function ActorCriticPolicy.forward at 0x7a47bd833d00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a47bd833d90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a47bd833e20>", "_predict": "<function ActorCriticPolicy._predict at 0x7a47bd833eb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a47bd833f40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a47bd840040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a47bd8400d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a47c6a84280>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691302128564887223, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAK7mEkBQQcU+E8i5PkOxG0DOkkq/z6flPqFS8b+QvALA45P8Prc2H75IGcY/BGeMv0SS7r4XSDI/ybgGPxG1jD+Vfqe/iWI4Pz+lV78vn7299LIivsz1f78eNpW+H2i8P65+nb9K6Bc/GA05wE6Hlb9IAZ8/owtRPzxPID2BcbI/k5i6P7G8UDzukMm+KDg7vxLJBD93umBAfOuIP+pGHz+Qjo2/mP+sPNcWu76hP5I/EoSBP+cXh79VYqm/STAgQBftKz+CfydAsx5SvxPNaj2/DlA/27XXv0oTsT5Oh5W/AvO2PdNDXz2thgE//IaIPj9H3b+uIRDArhG0v1TEMz/S10e/r364Pp4gL7/Hd8Y/4XEDQG4lDr8Vij2+6YVFQMOlJL+6xV4/hWXMvxealz8gjxG/Wzo5PlXhiD+x50a+rn6dv0roFz9KE7E+YSRbPya2+r6koMw+0Zu1PqmXEr4gTdq/BfG+Pg20Ar+lB0e/h7V9PgZ7Tb8ILOu+utb+v3hQj7/gFAQ9agcpP0fgYj/L7Eo/0Nf1PaayWD4GFM+/kua2vh9QO78obR0/5ao9P65+nb9K6Bc/ShOxPk6Hlb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADru/+0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgFB6PQAAAABSdvW/AAAAAKXP0rwAAAAA+An8PwAAAADRERS9AAAAADXO6D8AAAAApEvVvQAAAABree6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAchi2NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKztiz0AAAAAM4v7vwAAAAB268E9AAAAALU98z8AAAAADjuOvQAAAAAOpPI/AAAAALTyzr0AAAAAhC/rvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH/WQbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB5gZ09AAAAABY5978AAAAAd1gEPQAAAAAy5OM/AAAAAFqxVL0AAAAA10QAQAAAAAAOpYe9AAAAAAtC778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADY3hq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQPlSvQAAAACtrNm/AAAAAJyV2r0AAAAAqMHpPwAAAABPDv29AAAAAJk88j8AAAAAZBKnvQAAAAAWE96/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJwK6JVKf4CMAWyUTegDjAF0lEdAqaCXWSU1RHV9lChoBkdAnegE/wAlwGgHTegDaAhHQKmsG4G2TgV1fZQoaAZHQJ0WTJT2nKpoB03oA2gIR0CprCDSG8EndX2UKGgGR0Cd3G0th/iHaAdN6ANoCEdAqa2xVjqfOHV9lChoBkdAna7p7w8W9GgHTegDaAhHQKmu55Pdl/Z1fZQoaAZHQJ06TleWv8toB03oA2gIR0CpuDJ2t+1CdX2UKGgGR0CC5kaQ3gk1aAdN6ANoCEdAqbg4mNR3vHV9lChoBkdAmzqMNQTEi2gHTegDaAhHQKm5xEmY0EZ1fZQoaAZHQJfxumygPEtoB03oA2gIR0CpuvseXAuadX2UKGgGR0CCYuvkBCD3aAdN6ANoCEdAqcaqkM1CPnV9lChoBkdAmk0MLF4s3GgHTegDaAhHQKnGsAR02cd1fZQoaAZHQJw278VHnU5oB03oA2gIR0CpyEUD+zdDdX2UKGgGR0CZLFGYKIBSaAdN6ANoCEdAqcmBYeT3ZnV9lChoBkdAl3jr+1jRUmgHTegDaAhHQKnS/qGlANZ1fZQoaAZHQJrew4GUwBZoB03oA2gIR0Cp0wQCr92pdX2UKGgGR0Cd8vVpKzzFaAdN6ANoCEdAqdSbPdEb53V9lChoBkdAm0fTbnHNo2gHTegDaAhHQKnVx5eqrBF1fZQoaAZHQJ6G3VlPJq9oB03oA2gIR0Cp4St8NQTFdX2UKGgGR0CcMwBPsRg7aAdN6ANoCEdAqeExGQSzxHV9lChoBkdAlsRpLVWjoWgHTegDaAhHQKniwImgJ1J1fZQoaAZHQJ5VFEDyOJdoB03oA2gIR0Cp4/DmCAc1dX2UKGgGR0CcLNgPEsJ6aAdN6ANoCEdAqe0lAVwgknV9lChoBkdAnKVwGW2PUGgHTegDaAhHQKntKqbSZ0F1fZQoaAZHQJyHtEv0yxloB03oA2gIR0Cp7rkRSP2gdX2UKGgGR0CdDJZ2IO6NaAdN6ANoCEdAqe/pLRKHwnV9lChoBkdAnWvvHHWBjGgHTegDaAhHQKn7STkhib51fZQoaAZHQJ3KiBpYcNpoB03oA2gIR0Cp+1AqVhTgdX2UKGgGR0CW0UWNWEK3aAdN6ANoCEdAqfzd+1Bt13V9lChoBkdAnXfQtvn8sWgHTegDaAhHQKn+DJWeYlZ1fZQoaAZHQJs01lar3kBoB03oA2gIR0CqByxZuAI6dX2UKGgGR0Cc5lhq0tyxaAdN6ANoCEdAqgcyGlANX3V9lChoBkdAmMgfoFFDv2gHTegDaAhHQKoIwypJf6Z1fZQoaAZHQJsoZxVAAyVoB03oA2gIR0CqCe+t0V8DdX2UKGgGR0CfyLpOvdM1aAdN6ANoCEdAqhVjSCvovHV9lChoBkdAndol/pdKNGgHTegDaAhHQKoVa3wTdtV1fZQoaAZHQJz1vNMXaaloB03oA2gIR0CqFx+8f3evdX2UKGgGR0Ce/0oQ4CIUaAdN6ANoCEdAqhhT+5vtMXV9lChoBkdAltriiZfD12gHTegDaAhHQKohaegctGx1fZQoaAZHQJwpfWMCLdhoB03oA2gIR0CqIW9mQKa5dX2UKGgGR0CbcbCD28IzaAdN6ANoCEdAqiMB91EE1XV9lChoBkdAmZm0mD15B2gHTegDaAhHQKokK9IPK+11fZQoaAZHQJDaeyyD7IloB03oA2gIR0CqL30iQkondX2UKGgGR0CRuWyI55quaAdN6ANoCEdAqi+G65Gz8nV9lChoBkdAgxCJF9a2W2gHTegDaAhHQKoxenZ00WN1fZQoaAZHQJcgS3UhFE1oB03oA2gIR0CqMqbVBlcydX2UKGgGR0Ca8g7g88s+aAdN6ANoCEdAqjv/qC6H03V9lChoBkdAmsfR3A2ycGgHTegDaAhHQKo8BSEUTL51fZQoaAZHQJj7mlzltCRoB03oA2gIR0CqPZnDaXa8dX2UKGgGR0CXGik9lmOEaAdN6ANoCEdAqj7KxZ+x4nV9lChoBkdAmpYQQUYbbWgHTegDaAhHQKpJw8TSLIh1fZQoaAZHQJkZMrZrYXhoB03oA2gIR0CqScx15jYqdX2UKGgGR0CdSkFG5MDfaAdN6ANoCEdAqkv7ZFocrHV9lChoBkdAnR0k5IYm9mgHTegDaAhHQKpNMfHPu5V1fZQoaAZHQJ2MOVGCqZNoB03oA2gIR0CqVpFSsKb8dX2UKGgGR0Cc+dOUMXrMaAdN6ANoCEdAqlaXCj1wpHV9lChoBkdAmmfHYlIEsGgHTegDaAhHQKpYMuTzNEB1fZQoaAZHQJvPRKcurZJoB03oA2gIR0CqWWURvm5ldX2UKGgGR0CRk7CCjDbbaAdN6ANoCEdAqmReV3Ux23V9lChoBkdAnipGNrCWNWgHTegDaAhHQKpkZpMYdhl1fZQoaAZHQJqCgEfT1ChoB03oA2gIR0CqZp5Dqnm8dX2UKGgGR0CbEuRFqi48aAdN6ANoCEdAqmfCOYIBzXV9lChoBkdAmZHTg/C66WgHTegDaAhHQKpw41stTUB1fZQoaAZHQJvVXZsbedloB03oA2gIR0CqcOitzS1FdX2UKGgGR0CcS5S3b212aAdN6ANoCEdAqnJ0xsVLz3V9lChoBkdAm9sAe/5+IGgHTegDaAhHQKpzmgEEC/51fZQoaAZHQJvD10FKTStoB03oA2gIR0CqffBxgiNbdX2UKGgGR0CYJpBRQ79yaAdN6ANoCEdAqn34JJGvwHV9lChoBkdAmUp0rkKeCmgHTegDaAhHQKqAVOrQw9J1fZQoaAZHQJyr39uP3i9oB03oA2gIR0Cqgbe54GD+dX2UKGgGR0CdCQdat9x7aAdN6ANoCEdAqoqueQMhHXV9lChoBkdAnikmBnSOR2gHTegDaAhHQKqKs8dxQzl1fZQoaAZHQJ24H8TBZZBoB03oA2gIR0CqjFxO+IuXdX2UKGgGR0Ccy+IuoP07aAdN6ANoCEdAqo2LF2mpEXV9lChoBkdAnIUfI0ZWJmgHTegDaAhHQKqXgMG5c1R1fZQoaAZHQJmXvV8Ti85oB03oA2gIR0Cql4iA2AG0dX2UKGgGR0CcV2y3Td+HaAdN6ANoCEdAqpnR80DU3HV9lChoBkdAmrVELUkOZ2gHTegDaAhHQKqbk8/Uvwp1fZQoaAZHQJg/dhuwX69oB03oA2gIR0CqpLZ88cMmdX2UKGgGR0CcDPAUL2HtaAdN6ANoCEdAqqS73qRlpXV9lChoBkdAnIOPcN6PbWgHTegDaAhHQKqmSC2c8T11fZQoaAZHQJzulSl3yI5oB03oA2gIR0Cqp4VB+nZTdX2UKGgGR0CZ65GoJiRXaAdN6ANoCEdAqrFLt3OfNHV9lChoBkdAnWRaKcd5p2gHTegDaAhHQKqxVKCg9Nh1fZQoaAZHQJvM7A44p+doB03oA2gIR0Cqs5yAH3UQdX2UKGgGR0CVJrlImPYGaAdN6ANoCEdAqrVtTHbRGHV9lChoBkdAmX2vr8iwCGgHTegDaAhHQKq/G9Zid8R1fZQoaAZHQJ9cA1vVEuxoB03oA2gIR0CqvyFSKm8/dX2UKGgGR0CcJRC3w1BMaAdN6ANoCEdAqsCwGD+R5nV9lChoBkdAnRrHtjTa02gHTegDaAhHQKrB2VUuL751fZQoaAZHQJvxLlS0jTtoB03oA2gIR0Cqy2EfDDTCdX2UKGgGR0CfYOOWjXWfaAdN6ANoCEdAqstpAGB4EHV9lChoBkdAm+J0AxSHd2gHTegDaAhHQKrNvMOf/WF1fZQoaAZHQJ0DEm2LHdZoB03oA2gIR0Cqz5PQfIS2dX2UKGgGR0CDpCMyad+YaAdN6ANoCEdAqtln6uW8iHV9lChoBkdAnNZGCiAUcmgHTegDaAhHQKrZbWJ79ht1fZQoaAZHQIzxXUhFEzBoB03oA2gIR0Cq2vXNTtLMdX2UKGgGR0CboZiExqO+aAdN6ANoCEdAqtwkrK/203V9lChoBkdAjJr+/pMYdmgHTegDaAhHQKrlZ7OVxCJ1fZQoaAZHQJIxIXhwVCZoB03oA2gIR0Cq5W+B6KLsdX2UKGgGR0CKcD03fhuPaAdN6ANoCEdAque3nyNGVnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a6ec80a7010>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a6ec80a70a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a6ec80a7130>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a6ec80a71c0>", "_build": "<function ActorCriticPolicy._build at 0x7a6ec80a7250>", "forward": "<function ActorCriticPolicy.forward at 0x7a6ec80a72e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a6ec80a7370>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a6ec80a7400>", "_predict": "<function ActorCriticPolicy._predict at 0x7a6ec80a7490>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a6ec80a7520>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a6ec80a75b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a6ec80a7640>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a6ec80a9500>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 3000000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691373477251343233, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANebzz7PxjE/1VE+vuYyWb3xtD4/bwJiPwpBnz738j+/+qJNP9+Rfb6fYEU/9SXcv3BX2L4PH/c+Z7PYvk1qg74CmT8+PR8ePj9+Ej+FMok8MYGUPx/ER7+Fj5c/kLl9u+3nX78GQyg/leK2PqpxAD/NDuW/8I0lvgyMID/qadG+S/aYPmxnCD3MzyC/ShpiP1aRJL4cFsY+LBVqvxbGND/bN54+mzUGPyW5Tz+q9XC+q/GwP8TqkT/5WyU+R9XMP8Aqe79rVEQ/3V16v4LXBcDfWJI/BkMoP5Xitj6qcQA/WOQTv2m+Tb4dYyY/1WOlPeYgPT8fWgI/56epvo10Mr+8P3g/bMXZvlVZzD50uZ4+Y8stP9LpIT/nLHk/iSwRvz+MfD9XM/084nAYPwpTXr4Y04q/LME/Pd/SR77PHzy/31iSPwZDKD+V4rY+qnEAP9MCeD4WA10/z7v1vuCWvLxC00g/k1mYP1xtKD5Cz0G/kKpUP+aEvL7oZuM/3Xx/v4ebeL9bBsC++RvivkDfRb55V94+HjDTv00PEz8Q+wQ8TUAWP31vAsBPk0w//P60Pt9Ykj8GQyg/leK2PqpxAD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABA13g2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAeaTtvQAAAACCG/q/AAAAAMd+V70AAAAAR4EAQAAAAABOFh+9AAAAAAT6/T8AAAAAQ0kLvgAAAABw8vq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAczUBNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgC6Yrb0AAAAAE4bivwAAAACqIwW+AAAAAOh93j8AAAAADIAevAAAAADXou8/AAAAAK1SUL0AAAAAaO3wvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFYvlDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC4nZS9AAAAALaH6b8AAAAA9Ca8OwAAAAB7bPI/AAAAAPcNjLwAAAAAdY/ePwAAAADmuQq+AAAAAJet3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB98L01AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARfT9vAAAAADevfu/AAAAAFWJBr4AAAAAR5r+PwAAAADp6Mo9AAAAAHE3+T8AAAAARt10vQAAAABUid6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJMGDnMdLg6MAWyUTegDjAF0lEdAtGqdh3JPqXV9lChoBkdAlJbYAbQ1JmgHTegDaAhHQLRs+EfT1Ch1fZQoaAZHQJKW2uRs/INoB03oA2gIR0C0bl5ZB9kSdX2UKGgGR0CTEkYI0IkaaAdN6ANoCEdAtHEsJWvKU3V9lChoBkdAk4llmnO0LWgHTegDaAhHQLRyI4Fiay91fZQoaAZHQJO91DArQPZoB03oA2gIR0C0dBDFQ2uQdX2UKGgGR0CTqvky1uzhaAdN6ANoCEdAtHUFlvqC6HV9lChoBkdAlUPmEoOQQ2gHTegDaAhHQLR3huy/sVt1fZQoaAZHQJZupO1v2oNoB03oA2gIR0C0eIFYuCf6dX2UKGgGR0CThZe67NB4aAdN6ANoCEdAtHr+O6unuXV9lChoBkdAlMRHgLqlg2gHTegDaAhHQLR8bcawUxp1fZQoaAZHQJOmC2RaHKxoB03oA2gIR0C0fvyuZCv6dX2UKGgGR0CTlJ0PpY9xaAdN6ANoCEdAtH/z101ZT3V9lChoBkdAj83J17pmmWgHTegDaAhHQLSB7RHPNV11fZQoaAZHQJFCe5Etuk1oB03oA2gIR0C0gucqBmPHdX2UKGgGR0CTx0abF0gbaAdN6ANoCEdAtIVn2Dg62nV9lChoBkdAk32VX3g1nGgHTegDaAhHQLSGYe8PFvR1fZQoaAZHQJK2fspobn5oB03oA2gIR0C0iQt03fhudX2UKGgGR0CTPAUCJXQuaAdN6ANoCEdAtIpbLB9Cu3V9lChoBkdAlIba2jO9nWgHTegDaAhHQLSM7SHuZ1F1fZQoaAZHQJN1/pdKNAFoB03oA2gIR0C0jeqN2ki2dX2UKGgGR0CUEsx9G7SRaAdN6ANoCEdAtI/WziS7oXV9lChoBkdAk9e8otthu2gHTegDaAhHQLSQymmce8x1fZQoaAZHQJUnxWyTpxFoB03oA2gIR0C0k0rnTy8SdX2UKGgGR0CU29ZR8+ibaAdN6ANoCEdAtJRbPLPldXV9lChoBkdAk+4h9w3o92gHTegDaAhHQLSXRBczImx1fZQoaAZHQJc4yVcD8tRoB03oA2gIR0C0mFmdy1eCdX2UKGgGR0CWH5TI/7iyaAdN6ANoCEdAtJrkcS5AhXV9lChoBkdAlr8cXN1QqWgHTegDaAhHQLSb65Gz8gp1fZQoaAZHQJaCjThHbypoB03oA2gIR0C0ndwiqyWzdX2UKGgGR0CUDQBHkLhKaAdN6ANoCEdAtJ7IinpB5XV9lChoBkdAlJ6hhlUZN2gHTegDaAhHQLShWvYe1a51fZQoaAZHQJePwHs1KoRoB03oA2gIR0C0oqOQU5+6dX2UKGgGR0CUVdAymALBaAdN6ANoCEdAtKVl/2Cd0HV9lChoBkdAk4qEg4ffXWgHTegDaAhHQLSmVFspG4J1fZQoaAZHQJazuq+8Gs5oB03oA2gIR0C0qNje9Ba+dX2UKGgGR0CV/y76YVqOaAdN6ANoCEdAtKnRvVEux3V9lChoBkdAldXsVk+X7mgHTegDaAhHQLSrvONo8IR1fZQoaAZHQJacSWzF+/hoB03oA2gIR0C0rK2yPdVOdX2UKGgGR0CW43BnBciXaAdN6ANoCEdAtK8d8G9pRHV9lChoBkdAlO4/szEaVGgHTegDaAhHQLSwiEL6UJR1fZQoaAZHQJVv31+RYA9oB03oA2gIR0C0sykw35vcdX2UKGgGR0CUFY717IDHaAdN6ANoCEdAtLQUJfICEHV9lChoBkdAldioc3l0YGgHTegDaAhHQLS2kWxhUip1fZQoaAZHQJTZnOC5EtxoB03oA2gIR0C0t4rcXWOIdX2UKGgGR0CWTg1oQFs6aAdN6ANoCEdAtLl0IcBEKHV9lChoBkdAlJX4X0oSc2gHTegDaAhHQLS6YkCmuT11fZQoaAZHQJO1reqJdjZoB03oA2gIR0C0vPkLc9GJdX2UKGgGR0CThXK4x1xLaAdN6ANoCEdAtL5pqHoHLXV9lChoBkdAlENlv2oNu2gHTegDaAhHQLTA9/yoXKt1fZQoaAZHQJPYNYcNpdtoB03oA2gIR0C0weRQFcIJdX2UKGgGR0CWmc36AOJ+aAdN6ANoCEdAtMRk/W1+iXV9lChoBkdAl/sPcafjCGgHTegDaAhHQLTFY/CqIad1fZQoaAZHQJi29xjriVBoB03oA2gIR0C0x1Yoy9EkdX2UKGgGR0CXtzG/N7jUaAdN6ANoCEdAtMhJ1SwW33V9lChoBkdAlTShGtp22WgHTegDaAhHQLTLCKVII4V1fZQoaAZHQJeJRiPQv6FoB03oA2gIR0C0zHnn6l+FdX2UKGgGR0CUx9BfKISEaAdN6ANoCEdAtM7MyckMTnV9lChoBkdAlFkIo3JgcGgHTegDaAhHQLTPt5q/M4d1fZQoaAZHQJbYINb1RLtoB03oA2gIR0C00jGa2F37dX2UKGgGR0CWnOvIfbKzaAdN6ANoCEdAtNMwkIHC43V9lChoBkdAluzYJRfnfWgHTegDaAhHQLTVHh/y5I91fZQoaAZHQJnp+vr4WUNoB03oA2gIR0C01gtzfaYedX2UKGgGR0CW27GnGbTdaAdN6ANoCEdAtNkOrLhaT3V9lChoBkdAl2GlINEw4GgHTegDaAhHQLTahDUVi4J1fZQoaAZHQJS9BB3Roh9oB03oA2gIR0C03KzQZ4wAdX2UKGgGR0CWE3BMzuWsaAdN6ANoCEdAtN2ZXS0BwXV9lChoBkdAlkGnI6r/82gHTegDaAhHQLTgGfyf+S91fZQoaAZHQJR1TR4QjD9oB03oA2gIR0C04Q/3i704dX2UKGgGR0CUErTWoWHlaAdN6ANoCEdAtOL+d/axo3V9lChoBkdAlTbieAd4mmgHTegDaAhHQLTj7FtsN2F1fZQoaAZHQJUEc580DU5oB03oA2gIR0C05vvGuLaVdX2UKGgGR0CW7fa5f+juaAdN6ANoCEdAtOh0NEw353V9lChoBkdAmMZsHbAUL2gHTegDaAhHQLTqYnssxwh1fZQoaAZHQJYDPQ1JlJ9oB03oA2gIR0C0601h9b5edX2UKGgGR0CWfWECeVcEaAdN6ANoCEdAtO3BschkiHV9lChoBkdAlax93GGVRmgHTegDaAhHQLTuuuq3mV91fZQoaAZHQJZTfdJrcj9oB03oA2gIR0C08KODSPU8dX2UKGgGR0CVtvQswtaqaAdN6ANoCEdAtPGabnX/YXV9lChoBkdAmLce6unuRmgHTegDaAhHQLT0xY1pCa91fZQoaAZHQJF0/+Lm6oVoB03oA2gIR0C09jPEjxCqdX2UKGgGR0CTK6W+49X+aAdN6ANoCEdAtPgY0elsQHV9lChoBkdAlSv3JxNqQGgHTegDaAhHQLT5AVQAMlV1fZQoaAZHQJZg11nuiN9oB03oA2gIR0C0+4J4wAU+dX2UKGgGR0CSsvlSjxkNaAdN6ANoCEdAtPyFNi6QNnV9lChoBkdAjOWHpr1ui2gHTegDaAhHQLT+cm7rcCZ1fZQoaAZHQIhZ9IVdonNoB03oA2gIR0C0/2Ogg5imdX2UKGgGR0CW5aXhfjS5aAdN6ANoCEdAtQK+CJ40M3V9lChoBkdAj9Q95yEL6WgHTegDaAhHQLUEAiSq2jR1fZQoaAZHQJTXe1mapgloB03oA2gIR0C1BffdM0xedX2UKGgGR0CAU9Sx7iQ1aAdN6ANoCEdAtQbnhAGB4HV9lChoBkdAkvVAY+B6KWgHTegDaAhHQLUJYCeVcD91fZQoaAZHQJkqgQ4CIUJoB03oA2gIR0C1CmMfNiYtdX2UKGgGR0CRTrQemvW6aAdN6ANoCEdAtQxTh4t6HHV9lChoBkdAlxoGMwUQCmgHTegDaAhHQLUNScdYGMZ1fZQoaAZHQJbOVA3T/hloB03oA2gIR0C1EOh3JPqLdX2UKGgGR0CVgsdtEXtTaAdN6ANoCEdAtRH8Kb8WK3V9lChoBkdAlfEW4y44ImgHTegDaAhHQLUT+c+qzZ91fZQoaAZHQJRJlPykKu1oB03oA2gIR0C1FPUDZDiPdX2UKGgGR0CU+aswtapxaAdN6ANoCEdAtRd9o9LYgHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 93750, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 666.1204074913345, "std_reward": 262.55384349220384, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-06T07:05:56.636322"}
 
1
+ {"mean_reward": 1457.4972338771854, "std_reward": 109.66782341270697, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-07T03:27:51.172976"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a60618162773fef8c23356ea02e0a21b49d72d725fbdd77f0d909d51b49b8cc2
3
  size 2176
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac83d5157d4f81ab9fe60aa65e8756e376c918e5b321497a7ce3b57e0ae92a0b
3
  size 2176