shubh2014shiv
commited on
Commit
•
06bef3c
1
Parent(s):
69e47d1
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Steps to use this model
|
2 |
+
This model uses tokenizer 'rinna/japanese-roberta-base'. Therefore, below steps are critical to run the model correctly.
|
3 |
+
|
4 |
+
1. Create a local root directory on your system and new python environment.
|
5 |
+
2. Install below requirements
|
6 |
+
|
7 |
+
```
|
8 |
+
transformers==4.12.2
|
9 |
+
torch==1.10.0
|
10 |
+
numpy==1.21.3
|
11 |
+
pandas==1.3.4
|
12 |
+
sentencepiece==0.1.96
|
13 |
+
```
|
14 |
+
3. Go to link: "https://huggingface.co/spaces/shubh2014shiv/Japanese_NLP/tree/main" and download the fine tuned weights "reviewSentiments_jp.pt" in same local root directory.
|
15 |
+
4. Rename the downloaded weights as "reviewSentiments_jp.pt"
|
16 |
+
5. Use below code in the newly created environment.
|
17 |
+
|
18 |
+
```
|
19 |
+
from transformers import T5Tokenizer,BertForSequenceClassification
|
20 |
+
import torch
|
21 |
+
tokenizer = T5Tokenizer.from_pretrained('rinna/japanese-roberta-base')
|
22 |
+
japanese_review_text = "履きやすい。タイムセールで購入しました。見た目以上にカッコいいです。(^^)"
|
23 |
+
encoded_data = tokenizer.batch_encode_plus([japanese_review_text ],
|
24 |
+
add_special_tokens=True,
|
25 |
+
return_attention_mask=True,
|
26 |
+
padding=True,
|
27 |
+
max_length=200,
|
28 |
+
return_tensors='pt',
|
29 |
+
truncation=True)
|
30 |
+
input_ids = encoded_data['input_ids']
|
31 |
+
attention_masks = encoded_data['attention_mask']
|
32 |
+
model = BertForSequenceClassification.from_pretrained("shubh2014shiv/jp_review_sentiments_amzn",
|
33 |
+
num_labels=2,
|
34 |
+
output_attentions=False,
|
35 |
+
output_hidden_states=False)
|
36 |
+
model.load_state_dict(torch.load('reviewSentiments_jp.pt',map_location=torch.device('cpu')))
|
37 |
+
inputs = { 'input_ids': input_ids,
|
38 |
+
'attention_mask': attention_masks}
|
39 |
+
with torch.no_grad():
|
40 |
+
outputs = model(**inputs)
|
41 |
+
|
42 |
+
logits = outputs.logits
|
43 |
+
logits = logits.detach().cpu().numpy()
|
44 |
+
scores = 1 / (1 + np.exp(-1 * logits))
|
45 |
+
result = {"TEXT (文章)": jp_review_text,'NEGATIVE (ネガティブ)': scores[0][0], 'POSITIVE (ポジティブ)': scores[0][1]}
|
46 |
+
```
|
47 |
+
|
48 |
+
Output should be as below:
|
49 |
+
{'TEXT (文章)': '履きやすい。タイムセールで購入しました。見た目以上にカッコいいです。(^^)', 'NEGATIVE (ネガティブ)': 0.023672901, 'POSITIVE (ポジティブ)': 0.96819043}
|