shreyasgite
commited on
Commit
·
9e9abdb
1
Parent(s):
2d2fff9
update model card README.md
Browse files
README.md
CHANGED
@@ -2,6 +2,8 @@
|
|
2 |
license: apache-2.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
|
|
|
|
5 |
model-index:
|
6 |
- name: wav2vec2-large-xls-r-300m-dementianet
|
7 |
results: []
|
@@ -13,6 +15,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
13 |
# wav2vec2-large-xls-r-300m-dementianet
|
14 |
|
15 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
|
|
|
|
|
|
|
16 |
|
17 |
## Model description
|
18 |
|
@@ -39,11 +44,19 @@ The following hyperparameters were used during training:
|
|
39 |
- total_train_batch_size: 16
|
40 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
- lr_scheduler_type: linear
|
42 |
-
- num_epochs:
|
43 |
- mixed_precision_training: Native AMP
|
44 |
|
45 |
### Training results
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
|
49 |
### Framework versions
|
|
|
2 |
license: apache-2.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
model-index:
|
8 |
- name: wav2vec2-large-xls-r-300m-dementianet
|
9 |
results: []
|
|
|
15 |
# wav2vec2-large-xls-r-300m-dementianet
|
16 |
|
17 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.3430
|
20 |
+
- Accuracy: 0.4062
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
44 |
- total_train_batch_size: 16
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 22
|
48 |
- mixed_precision_training: Native AMP
|
49 |
|
50 |
### Training results
|
51 |
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
54 |
+
| 1.3845 | 3.33 | 40 | 1.3556 | 0.3125 |
|
55 |
+
| 1.3659 | 6.67 | 80 | 1.3602 | 0.3125 |
|
56 |
+
| 1.3619 | 10.0 | 120 | 1.3569 | 0.3125 |
|
57 |
+
| 1.3575 | 13.33 | 160 | 1.3509 | 0.3125 |
|
58 |
+
| 1.3356 | 16.67 | 200 | 1.3599 | 0.3125 |
|
59 |
+
| 1.3166 | 20.0 | 240 | 1.3430 | 0.4062 |
|
60 |
|
61 |
|
62 |
### Framework versions
|