shreyansh1347
commited on
Commit
•
7b928b9
1
Parent(s):
98c0f89
Upload task1.ipynb
Browse files- task1.ipynb +330 -0
task1.ipynb
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 25,
|
6 |
+
"id": "536c48a1",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"#!pip install pytesseract\n",
|
11 |
+
"from PIL import Image\n",
|
12 |
+
"import pandas as pd\n",
|
13 |
+
"import pytesseract\n",
|
14 |
+
"from pytesseract import Output\n",
|
15 |
+
"import pandas as pd"
|
16 |
+
]
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"cell_type": "code",
|
20 |
+
"execution_count": 26,
|
21 |
+
"id": "611fd576-62e6-406a-83ed-6d0a8497e34d",
|
22 |
+
"metadata": {},
|
23 |
+
"outputs": [],
|
24 |
+
"source": [
|
25 |
+
"#!pip install pyarrow"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": 27,
|
31 |
+
"id": "f97b4939",
|
32 |
+
"metadata": {},
|
33 |
+
"outputs": [],
|
34 |
+
"source": [
|
35 |
+
"df = pd.read_parquet('./testing.parquet')"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": 28,
|
41 |
+
"id": "afd89e19-9348-414e-a951-4e36dfa3fb60",
|
42 |
+
"metadata": {},
|
43 |
+
"outputs": [
|
44 |
+
{
|
45 |
+
"data": {
|
46 |
+
"text/html": [
|
47 |
+
"<div>\n",
|
48 |
+
"<style scoped>\n",
|
49 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
50 |
+
" vertical-align: middle;\n",
|
51 |
+
" }\n",
|
52 |
+
"\n",
|
53 |
+
" .dataframe tbody tr th {\n",
|
54 |
+
" vertical-align: top;\n",
|
55 |
+
" }\n",
|
56 |
+
"\n",
|
57 |
+
" .dataframe thead th {\n",
|
58 |
+
" text-align: right;\n",
|
59 |
+
" }\n",
|
60 |
+
"</style>\n",
|
61 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
62 |
+
" <thead>\n",
|
63 |
+
" <tr style=\"text-align: right;\">\n",
|
64 |
+
" <th></th>\n",
|
65 |
+
" <th>image</th>\n",
|
66 |
+
" <th>ocr_annotation_texts</th>\n",
|
67 |
+
" <th>image_height</th>\n",
|
68 |
+
" <th>image_width</th>\n",
|
69 |
+
" </tr>\n",
|
70 |
+
" </thead>\n",
|
71 |
+
" <tbody>\n",
|
72 |
+
" <tr>\n",
|
73 |
+
" <th>0</th>\n",
|
74 |
+
" <td>b'\\x89PNG\\r\\n\\x1a\\n\\x00\\x00\\x00\\rIHDR\\x00\\x00\\...</td>\n",
|
75 |
+
" <td>71 2 84 11 \\n43 7 57 9 PROJECT BRIEF\\n14 11 19...</td>\n",
|
76 |
+
" <td>1000</td>\n",
|
77 |
+
" <td>762</td>\n",
|
78 |
+
" </tr>\n",
|
79 |
+
" <tr>\n",
|
80 |
+
" <th>1</th>\n",
|
81 |
+
" <td>b'\\x89PNG\\r\\n\\x1a\\n\\x00\\x00\\x00\\rIHDR\\x00\\x00\\...</td>\n",
|
82 |
+
" <td>3 3 11 10 B&W\\n77 3 87 10 QUALITY\\n15 4 74 9 Q...</td>\n",
|
83 |
+
" <td>1000</td>\n",
|
84 |
+
" <td>762</td>\n",
|
85 |
+
" </tr>\n",
|
86 |
+
" <tr>\n",
|
87 |
+
" <th>2</th>\n",
|
88 |
+
" <td>b'\\x89PNG\\r\\n\\x1a\\n\\x00\\x00\\x00\\rIHDR\\x00\\x00\\...</td>\n",
|
89 |
+
" <td>12 11 15 13 TO:\\n24 11 34 13 R. B. SPELL\\n64 1...</td>\n",
|
90 |
+
" <td>1000</td>\n",
|
91 |
+
" <td>754</td>\n",
|
92 |
+
" </tr>\n",
|
93 |
+
" <tr>\n",
|
94 |
+
" <th>3</th>\n",
|
95 |
+
" <td>b'\\x89PNG\\r\\n\\x1a\\n\\x00\\x00\\x00\\rIHDR\\x00\\x00\\...</td>\n",
|
96 |
+
" <td>28 6 73 9 SPORTS MARKETING ENTERPRISES DOCUMEN...</td>\n",
|
97 |
+
" <td>1000</td>\n",
|
98 |
+
" <td>795</td>\n",
|
99 |
+
" </tr>\n",
|
100 |
+
" <tr>\n",
|
101 |
+
" <th>4</th>\n",
|
102 |
+
" <td>b'\\x89PNG\\r\\n\\x1a\\n\\x00\\x00\\x00\\rIHDR\\x00\\x00\\...</td>\n",
|
103 |
+
" <td>18 8 25 9 S.P. Zolot\\n2 8 5 9 TO:\\n60 8 73 10 ...</td>\n",
|
104 |
+
" <td>1000</td>\n",
|
105 |
+
" <td>754</td>\n",
|
106 |
+
" </tr>\n",
|
107 |
+
" </tbody>\n",
|
108 |
+
"</table>\n",
|
109 |
+
"</div>"
|
110 |
+
],
|
111 |
+
"text/plain": [
|
112 |
+
" image \\\n",
|
113 |
+
"0 b'\\x89PNG\\r\\n\\x1a\\n\\x00\\x00\\x00\\rIHDR\\x00\\x00\\... \n",
|
114 |
+
"1 b'\\x89PNG\\r\\n\\x1a\\n\\x00\\x00\\x00\\rIHDR\\x00\\x00\\... \n",
|
115 |
+
"2 b'\\x89PNG\\r\\n\\x1a\\n\\x00\\x00\\x00\\rIHDR\\x00\\x00\\... \n",
|
116 |
+
"3 b'\\x89PNG\\r\\n\\x1a\\n\\x00\\x00\\x00\\rIHDR\\x00\\x00\\... \n",
|
117 |
+
"4 b'\\x89PNG\\r\\n\\x1a\\n\\x00\\x00\\x00\\rIHDR\\x00\\x00\\... \n",
|
118 |
+
"\n",
|
119 |
+
" ocr_annotation_texts image_height \\\n",
|
120 |
+
"0 71 2 84 11 \\n43 7 57 9 PROJECT BRIEF\\n14 11 19... 1000 \n",
|
121 |
+
"1 3 3 11 10 B&W\\n77 3 87 10 QUALITY\\n15 4 74 9 Q... 1000 \n",
|
122 |
+
"2 12 11 15 13 TO:\\n24 11 34 13 R. B. SPELL\\n64 1... 1000 \n",
|
123 |
+
"3 28 6 73 9 SPORTS MARKETING ENTERPRISES DOCUMEN... 1000 \n",
|
124 |
+
"4 18 8 25 9 S.P. Zolot\\n2 8 5 9 TO:\\n60 8 73 10 ... 1000 \n",
|
125 |
+
"\n",
|
126 |
+
" image_width \n",
|
127 |
+
"0 762 \n",
|
128 |
+
"1 762 \n",
|
129 |
+
"2 754 \n",
|
130 |
+
"3 795 \n",
|
131 |
+
"4 754 "
|
132 |
+
]
|
133 |
+
},
|
134 |
+
"execution_count": 28,
|
135 |
+
"metadata": {},
|
136 |
+
"output_type": "execute_result"
|
137 |
+
}
|
138 |
+
],
|
139 |
+
"source": [
|
140 |
+
"df.head()"
|
141 |
+
]
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"cell_type": "code",
|
145 |
+
"execution_count": 29,
|
146 |
+
"id": "22dc4078-3524-4a32-9f72-1f9e8e3588ca",
|
147 |
+
"metadata": {},
|
148 |
+
"outputs": [],
|
149 |
+
"source": [
|
150 |
+
"import numpy as np\n",
|
151 |
+
"import io\n",
|
152 |
+
"import cv2"
|
153 |
+
]
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"cell_type": "code",
|
157 |
+
"execution_count": 30,
|
158 |
+
"id": "68630cb9",
|
159 |
+
"metadata": {},
|
160 |
+
"outputs": [],
|
161 |
+
"source": [
|
162 |
+
"pytesseract.pytesseract.tesseract_cmd = r'/opt/homebrew/bin/tesseract'\n",
|
163 |
+
"\n",
|
164 |
+
"\n",
|
165 |
+
"\n",
|
166 |
+
"class ocr:\n",
|
167 |
+
" def __init__(self, df):\n",
|
168 |
+
" self.df = df\n",
|
169 |
+
" def get_data(self, n):\n",
|
170 |
+
" image = Image.open(io.BytesIO(self.df.iloc(0)[n]['image']))\n",
|
171 |
+
" image_height = self.df.iloc(0)[n]['image_height']\n",
|
172 |
+
" image_width = self.df.iloc(0)[n]['image_width']\n",
|
173 |
+
" image_data = pytesseract.image_to_data(image, output_type=Output.DICT)\n",
|
174 |
+
" txt = ''\n",
|
175 |
+
" \n",
|
176 |
+
" for i in range(len(image_data['level'])):\n",
|
177 |
+
" if image_data['text'][i] == '':\n",
|
178 |
+
" continue\n",
|
179 |
+
" txt += image_data['text'][i]\n",
|
180 |
+
" txt += ' ' + str(image_data['left'][i]) + ' ' + str(image_data['top'][i]) + ' ' + str(image_data['width'][i]) + ' ' + str(image_data['height'][i]) + ' '\n",
|
181 |
+
" return image, image_height, image_width, image_data, txt\n",
|
182 |
+
" def sort_bounding_boxes(self, img_data, img_height, img_width):\n",
|
183 |
+
" n_boxes = len(img_data['text'])\n",
|
184 |
+
" if n_boxes == 0:\n",
|
185 |
+
" return []\n",
|
186 |
+
" #print(n_boxes)\n",
|
187 |
+
" boxes = []\n",
|
188 |
+
" for i in range(n_boxes):\n",
|
189 |
+
" box = {\n",
|
190 |
+
" 'index': i,\n",
|
191 |
+
" 'text': img_data['text'][i],\n",
|
192 |
+
" 'left': img_data['left'][i],\n",
|
193 |
+
" 'top': img_data['top'][i],\n",
|
194 |
+
" 'width': img_data['width'][i],\n",
|
195 |
+
" 'height': img_data['height'][i]\n",
|
196 |
+
" }\n",
|
197 |
+
" boxes.append(box)\n",
|
198 |
+
" \n",
|
199 |
+
" \n",
|
200 |
+
" sorted_boxes = sorted(boxes, key=lambda x: (x['top'], x['left']))\n",
|
201 |
+
" \n",
|
202 |
+
" final_boxes = []\n",
|
203 |
+
" for i in range(len(sorted_boxes)):\n",
|
204 |
+
" if (\n",
|
205 |
+
" sorted_boxes[i]['left'] >= img_width * 0.9\n",
|
206 |
+
" or sorted_boxes[i]['top'] >= img_height * 0.9\n",
|
207 |
+
" ):\n",
|
208 |
+
" continue\n",
|
209 |
+
" else:\n",
|
210 |
+
" final_boxes.append(sorted_boxes[i])\n",
|
211 |
+
" return final_boxes\n",
|
212 |
+
" def ocr_parse(self, img_data, img_height, img_width, width_threshold_percent=2, height_threshold_percent=1):\n",
|
213 |
+
" parsed_boxes = []\n",
|
214 |
+
"\n",
|
215 |
+
" if not img_data:\n",
|
216 |
+
" return parsed_boxes\n",
|
217 |
+
"\n",
|
218 |
+
" current_box = img_data[0]\n",
|
219 |
+
" img_width = max(current_box['left'] + current_box['width'], 1)\n",
|
220 |
+
" img_height = max(current_box['top'] + current_box['height'], 1)\n",
|
221 |
+
" current_text = current_box['text']\n",
|
222 |
+
"\n",
|
223 |
+
" for i in range(1, len(img_data)):\n",
|
224 |
+
" width_threshold = img_width * width_threshold_percent / 100\n",
|
225 |
+
" height_threshold = img_height * height_threshold_percent / 100\n",
|
226 |
+
"\n",
|
227 |
+
" if (\n",
|
228 |
+
" img_data[i]['left'] - (current_box['left'] + current_box['width']) <= width_threshold\n",
|
229 |
+
" and abs(img_data[i]['top'] - current_box['top']) <= height_threshold\n",
|
230 |
+
" ):\n",
|
231 |
+
" current_box['width'] = img_data[i]['left'] + img_data[i]['width'] - current_box['left']\n",
|
232 |
+
" current_box['height'] = max(current_box['height'], img_data[i]['top'] + img_data[i]['height'] - current_box['top'])\n",
|
233 |
+
" current_text += ' ' + img_data[i]['text']\n",
|
234 |
+
" else:\n",
|
235 |
+
" current_box['text'] = current_text\n",
|
236 |
+
" parsed_boxes.append(current_box)\n",
|
237 |
+
" current_box = img_data[i]\n",
|
238 |
+
" current_text = current_box['text']\n",
|
239 |
+
"\n",
|
240 |
+
" current_box['text'] = current_text\n",
|
241 |
+
" parsed_boxes.append(current_box)\n",
|
242 |
+
"\n",
|
243 |
+
" return parsed_boxes\n",
|
244 |
+
" def view(self, n):\n",
|
245 |
+
" image, img_height, img_width, img_data, text = self.get_data(n)\n",
|
246 |
+
" img_str = self.df.iloc(0)[n]['image']\n",
|
247 |
+
" nparr = np.fromstring(img_str, np.uint8)\n",
|
248 |
+
" img_np = cv2.imdecode(nparr, flags=1)\n",
|
249 |
+
" \n",
|
250 |
+
" n_boxes = len(img_data['level'])\n",
|
251 |
+
" for i in range(n_boxes):\n",
|
252 |
+
" (x, y, w, h) = (img_data['left'][i], img_data['top'][i], img_data['width'][i], img_data['height'][i])\n",
|
253 |
+
" \n",
|
254 |
+
" sorted_boxes = self.sort_bounding_boxes(img_data, img_height, img_width)\n",
|
255 |
+
" parsed_boxes = self.ocr_parse(sorted_boxes, img_width, img_height)\n",
|
256 |
+
" \n",
|
257 |
+
" for box in parsed_boxes:\n",
|
258 |
+
" (x, y, w, h) = (box['left'], box['top'], box['width'], box['height'])\n",
|
259 |
+
" cv2.rectangle(img_np, (x, y), (x + w, y + h), (0, 255, 0), 2)\n",
|
260 |
+
" cv2.imwrite('result.png', img_np)\n",
|
261 |
+
" txt = ''\n",
|
262 |
+
" for j in range(len(parsed_boxes)):\n",
|
263 |
+
" if parsed_boxes[j]['text'] == '':\n",
|
264 |
+
" continue\n",
|
265 |
+
" txt += parsed_boxes[j]['text'].strip(' ')\n",
|
266 |
+
" txt += ' ' + str(parsed_boxes[j]['left']) + ' ' + str(parsed_boxes[j]['top']) + ' ' + str(parsed_boxes[j]['width']) + ' ' + str(parsed_boxes[j]['height']) + ' '\n",
|
267 |
+
" print(txt)\n",
|
268 |
+
" return txt"
|
269 |
+
]
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"cell_type": "code",
|
273 |
+
"execution_count": 31,
|
274 |
+
"id": "1a66c36d-f835-467e-97d9-597c288280b5",
|
275 |
+
"metadata": {},
|
276 |
+
"outputs": [
|
277 |
+
{
|
278 |
+
"name": "stdout",
|
279 |
+
"output_type": "stream",
|
280 |
+
"text": [
|
281 |
+
" 0 0 718 1000 PROJECT BRIEF 329 76 107 11 DATE: 107 110 49 28 June 2, 1990 DATE: 179 110 -28 28 June 1, 195 116 49 10 1990 263 117 107 15 BRAND: 112 143 46 31 General Merchandising 178 144 174 13 ITEM: 394 147 33 10 Package Fixture Circle-K Nonspecific 452 148 -184 26 Convenient Storés 451 162 140 12 SUMMARY OF PROJECT: 110 184 155 14 See Attached 285 187 99 11 SUPPLIERS BEING CONSIDERED: 109 254 222 12 chicago show 107 280 101 71 Display 108 301 58 21 Equation 374 301 -133 21 Chicago Display 107 336 125 15 Robert Nielson & Associates 107 364 224 13 FUNDING: 106 406 64 44 1990 Customized Merchandising 107 434 240 16 Services 106 461 65 11 SPNS - 198 463 -10 9 SIGNATURE: 104 560 92 14 REQUESTING MANAGER 102 599 170 14 MERCHANDISING MANAGER 101 641 189 57 GROUP PRODUCT DIRECTOR 101 686 184 12 — DEPARTMENT PURCHASING 282 721 -99 28 — 353 729 14 2 RETURN TO: 98 771 82 14 REQUESTING 199 772 83 13 | MANAGER 376 773 -27 10 4514cbta 98 827 66 10 \n"
|
282 |
+
]
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"name": "stderr",
|
286 |
+
"output_type": "stream",
|
287 |
+
"text": [
|
288 |
+
"/var/folders/fv/pf_pqm6s2ds43tstk6b5q3wm0000gn/T/ipykernel_72369/3881488818.py:86: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead\n",
|
289 |
+
" nparr = np.fromstring(img_str, np.uint8)\n"
|
290 |
+
]
|
291 |
+
}
|
292 |
+
],
|
293 |
+
"source": [
|
294 |
+
"ocr_obj = ocr(df)\n",
|
295 |
+
"text = ocr_obj.view(0)"
|
296 |
+
]
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"cell_type": "code",
|
300 |
+
"execution_count": null,
|
301 |
+
"id": "0cb71096",
|
302 |
+
"metadata": {},
|
303 |
+
"outputs": [],
|
304 |
+
"source": [
|
305 |
+
"text"
|
306 |
+
]
|
307 |
+
}
|
308 |
+
],
|
309 |
+
"metadata": {
|
310 |
+
"kernelspec": {
|
311 |
+
"display_name": "Python 3 (ipykernel)",
|
312 |
+
"language": "python",
|
313 |
+
"name": "python3"
|
314 |
+
},
|
315 |
+
"language_info": {
|
316 |
+
"codemirror_mode": {
|
317 |
+
"name": "ipython",
|
318 |
+
"version": 3
|
319 |
+
},
|
320 |
+
"file_extension": ".py",
|
321 |
+
"mimetype": "text/x-python",
|
322 |
+
"name": "python",
|
323 |
+
"nbconvert_exporter": "python",
|
324 |
+
"pygments_lexer": "ipython3",
|
325 |
+
"version": "3.11.5"
|
326 |
+
}
|
327 |
+
},
|
328 |
+
"nbformat": 4,
|
329 |
+
"nbformat_minor": 5
|
330 |
+
}
|