|
|
|
|
|
|
|
import torch
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
from transformers import LlamaTokenizer, LlamaForCausalLM, MistralForCausalLM
|
|
import bitsandbytes, flash_attn
|
|
|
|
tokenizer = LlamaTokenizer.from_pretrained('teknium/OpenHermes-2.5-Mistral-7B', trust_remote_code=True)
|
|
model = MistralForCausalLM.from_pretrained(
|
|
"teknium/OpenHermes-2.5-Mistral-7B",
|
|
torch_dtype=torch.float16,
|
|
device_map="auto",
|
|
load_in_8bit=False,
|
|
load_in_4bit=True,
|
|
use_flash_attention_2=True
|
|
)
|
|
|
|
prompts = [
|
|
"""<|im_start|>system
|
|
You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|>
|
|
<|im_start|>user
|
|
Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|>
|
|
<|im_start|>assistant""",
|
|
]
|
|
|
|
for chat in prompts:
|
|
print(chat)
|
|
input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda")
|
|
generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
|
|
response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
|
|
print(f"Response: {response}") |