shivr's picture
Initial PPO model on 1000000 training steps
ad41807
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc9dc365170>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc9dc365200>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc9dc365290>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc9dc365320>",
"_build": "<function ActorCriticPolicy._build at 0x7fc9dc3653b0>",
"forward": "<function ActorCriticPolicy.forward at 0x7fc9dc365440>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc9dc3654d0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fc9dc365560>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc9dc3655f0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc9dc365680>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc9dc365710>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7fc9dc3ad810>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1653350211.7242587,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAATaIZPqyW+z7jeC09ImKpvpSztT3KV9E8AAAAAAAAAAAgJgA+gNuwPw0G2T5dSMq+a+cbPa1QOT4AAAAAAAAAAO0VSz7u4+C8MB5yumcDBDlCD0S+dUWkOQAAgD8AAIA/zRnbvOF4lrqFrVe2DZ5YsbhA2TpAmoM1AACAPwAAgD86jhA+frFTP8XAYz5Mg/e+xRwuPkJeLrsAAAAAAAAAAA0UzD0P2MI/POoUP2Janz1IOKi9K6lvvQAAAAAAAAAAZkuGPeG0k7qgJOyz+thSrQZk2zle7J8zAACAPwAAgD+aKXC78NixPys9N76u6/q+CjANO1/DAroAAAAAAAAAAFoFlD5imdc+Q1MhvqqoiL4bXCQ+rjwLvQAAAAAAAAAADTMPvtJDmz8eFxK/3gknvxe03r2embe+AAAAAAAAAADALtc9TI1TPmg+Db51vn6+zsS3u6lUOb0AAAAAAAAAAJMpgj45tvY+lqyovccRzL4LWsE9QEEdvQAAAAAAAAAAmknlvFzPIbqQUf+0taIOMEuLLrtiiGg0AACAPwAAgD8amgo9eyaeuiNYsroN4we5v+WntztVxTkAAIA/AACAP811vj1klvE9JNbCvW7pMb4OAnk77l09vAAAAAAAAAAAhjIWPoNpfT2EHZa+LFwyvtrTzjzZcBC9AAAAAAAAAACUdJRiLg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gASVTRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhXtl3iqqcUCUhpRSlIwBbJRNLAGMAXSUR0CM0iUEgW8AdX2UKGgGaAloD0MIFyzVBbxsT0CUhpRSlGgVS6hoFkdAjNRnKwIMSnV9lChoBmgJaA9DCDCfrBiulnFAlIaUUpRoFUvzaBZHQIzUvh4t6HF1fZQoaAZoCWgPQwhSSZ2AJodyQJSGlFKUaBVNLAFoFkdAjNWTVc2R73V9lChoBmgJaA9DCOXVOQbkmHNAlIaUUpRoFUvnaBZHQIzV4smOU+t1fZQoaAZoCWgPQwguPC8VG6ZwQJSGlFKUaBVNEQFoFkdAjNYAuqWC3HV9lChoBmgJaA9DCEAYeO49+3BAlIaUUpRoFU0lAWgWR0CM1izDXOGCdX2UKGgGaAloD0MIGHyakxeMb0CUhpRSlGgVS+9oFkdAjNd14xDb8HV9lChoBmgJaA9DCE93nngOcHJAlIaUUpRoFU1MAWgWR0CM14P7N0NjdX2UKGgGaAloD0MIcodNZGbrbkCUhpRSlGgVS/NoFkdAjNft2C/XXnV9lChoBmgJaA9DCDViZp9HqnFAlIaUUpRoFU0NAWgWR0CM2J4etCAudX2UKGgGaAloD0MIGNLhIUxFc0CUhpRSlGgVTVUBaBZHQIzaBckdFOR1fZQoaAZoCWgPQwi5jnHFhX9xQJSGlFKUaBVNfwFoFkdAjNn5E2HclHV9lChoBmgJaA9DCMFSXcAL5HFAlIaUUpRoFU0cAWgWR0CM2xc2zfJndX2UKGgGaAloD0MIecvVj42dcECUhpRSlGgVTQABaBZHQIzcEWoFV1h1fZQoaAZoCWgPQwg49BYPb+BsQJSGlFKUaBVNDAFoFkdAjN7WvKU3XXV9lChoBmgJaA9DCEeSIFyB029AlIaUUpRoFUv1aBZHQIze2FJxvNx1fZQoaAZoCWgPQwh6G5sdqb5wQJSGlFKUaBVL7GgWR0CM4TiI+GGmdX2UKGgGaAloD0MI5ngFoifHckCUhpRSlGgVS/JoFkdAjOH/qX4TK3V9lChoBmgJaA9DCCtOtRamqnFAlIaUUpRoFUv1aBZHQIziEkrwvxp1fZQoaAZoCWgPQwi7e4DuC7hxQJSGlFKUaBVL82gWR0CM4jnwG4ZudX2UKGgGaAloD0MI/TOD+MCzcECUhpRSlGgVS+JoFkdAjOKd+G47R3V9lChoBmgJaA9DCBDOp44VnHBAlIaUUpRoFUvlaBZHQIzjQJHAh0R1fZQoaAZoCWgPQwjJAFDFTUpzQJSGlFKUaBVNLgFoFkdAjOPfXf642HV9lChoBmgJaA9DCE/LD1ylEHFAlIaUUpRoFUvjaBZHQIzj29eyAx11fZQoaAZoCWgPQwjBx2DFaZFwQJSGlFKUaBVNDQFoFkdAjOTC+L3sX3V9lChoBmgJaA9DCF2pZ0EomHFAlIaUUpRoFU09AWgWR0CM5Mlj3EhrdX2UKGgGaAloD0MIaauSyL7Cb0CUhpRSlGgVTQwBaBZHQIznFR+BpYd1fZQoaAZoCWgPQwgxCoLHdylxQJSGlFKUaBVNCwFoFkdAjOhYoAn2I3V9lChoBmgJaA9DCJ8ih4hbvXJAlIaUUpRoFU1TAWgWR0CM6qODrZ8KdX2UKGgGaAloD0MIeZPfolPYcECUhpRSlGgVTSEBaBZHQIzqr6JqIrR1fZQoaAZoCWgPQwizfjMxXVdyQJSGlFKUaBVL+WgWR0CM62UmD15CdX2UKGgGaAloD0MIuAIK9XSebkCUhpRSlGgVS+9oFkdAjO5A88s+V3V9lChoBmgJaA9DCA6jIHh8Y29AlIaUUpRoFU0rAWgWR0CM7jCMxXXAdX2UKGgGaAloD0MIumkzToNccECUhpRSlGgVS/ZoFkdAjO5y44Ia+HV9lChoBmgJaA9DCN/hdmhY729AlIaUUpRoFUv3aBZHQIzvHm/336B1fZQoaAZoCWgPQwjC3O7lPv5wQJSGlFKUaBVL42gWR0CM71yxzJZGdX2UKGgGaAloD0MIqrpHNleKckCUhpRSlGgVTRQBaBZHQIzvU6T4cm11fZQoaAZoCWgPQwgo8iTpGjBvQJSGlFKUaBVL72gWR0CM71YLb5/LdX2UKGgGaAloD0MIDHiZYWPec0CUhpRSlGgVS+NoFkdAjPAp4rz5GnV9lChoBmgJaA9DCHYaaam8qHFAlIaUUpRoFU0sAWgWR0CNFJLvkRzzdX2UKGgGaAloD0MIgZVDi2wWcUCUhpRSlGgVS/toFkdAjRTQ+EAYHnV9lChoBmgJaA9DCFe1pKOcLW9AlIaUUpRoFU0WAWgWR0CNFRbdJrckdX2UKGgGaAloD0MIEqRS7KjLcUCUhpRSlGgVS9FoFkdAjRY24EwFknV9lChoBmgJaA9DCBxBKsUOYmtAlIaUUpRoFUvvaBZHQI0Wa9ytFKF1fZQoaAZoCWgPQwhP6svSDgZyQJSGlFKUaBVNEQFoFkdAjRu3ai9Iw3V9lChoBmgJaA9DCPuuCP43R29AlIaUUpRoFU0BAWgWR0CNG6kKu0TldX2UKGgGaAloD0MI2xX6YBlJcUCUhpRSlGgVS9poFkdAjR25jx0+1XV9lChoBmgJaA9DCEZcABqlHXBAlIaUUpRoFUvxaBZHQI0fafapPyl1fZQoaAZoCWgPQwjnx19alFRxQJSGlFKUaBVL52gWR0CNH/CBwuM/dX2UKGgGaAloD0MIqFFIMqsgcECUhpRSlGgVTQ0BaBZHQI0f444p+c91fZQoaAZoCWgPQwiXj6Skx71xQJSGlFKUaBVNVAFoFkdAjSBPvKEFn3V9lChoBmgJaA9DCDJWm/9XgG9AlIaUUpRoFU0XAWgWR0CNIHXV9Wp7dX2UKGgGaAloD0MIGVbxRub7bkCUhpRSlGgVS+RoFkdAjSDvp6hQFnV9lChoBmgJaA9DCL0ZNV9l/XFAlIaUUpRoFU0kAWgWR0CNIlvQWvbHdX2UKGgGaAloD0MIRiI0gg1bb0CUhpRSlGgVTSwBaBZHQI0ihcNYr8R1fZQoaAZoCWgPQwi14bA0MHxwQJSGlFKUaBVL3WgWR0CNIrafSQYDdX2UKGgGaAloD0MIn3WNlsM+c0CUhpRSlGgVTT4BaBZHQI0iyDM/yG11fZQoaAZoCWgPQwib4nFRLQZuQJSGlFKUaBVNBQFoFkdAjSLwudwvQHV9lChoBmgJaA9DCPyp8dLNTW1AlIaUUpRoFUvsaBZHQI0jfVCojwB1fZQoaAZoCWgPQwguGjIeJdhyQJSGlFKUaBVNEQFoFkdAjSOYcNpdr3V9lChoBmgJaA9DCG+cFOY96VVAlIaUUpRoFUuQaBZHQI0jwppeu3d1fZQoaAZoCWgPQwij6exkcPhxQJSGlFKUaBVNHAFoFkdAjSq6r/82rHV9lChoBmgJaA9DCCpxHeOKI29AlIaUUpRoFUvqaBZHQI0rkgZCOWB1fZQoaAZoCWgPQwjE7dCwWCZzQJSGlFKUaBVL7GgWR0CNK6TINmUXdX2UKGgGaAloD0MIMZqV7cM8cECUhpRSlGgVTR0BaBZHQI0s1kJ8fFJ1fZQoaAZoCWgPQwhws3ix8PlxQJSGlFKUaBVL7WgWR0CNL2nMt9QXdX2UKGgGaAloD0MIAySaQBEnckCUhpRSlGgVS/1oFkdAjS+fc32mHnV9lChoBmgJaA9DCH1e8dSjYm9AlIaUUpRoFUv9aBZHQI0wRmdy1eB1fZQoaAZoCWgPQwgzMV2I1fZvQJSGlFKUaBVNJQFoFkdAjTCph4MWoHV9lChoBmgJaA9DCFaBWgweSnJAlIaUUpRoFUv3aBZHQI0xwD9wWFh1fZQoaAZoCWgPQwgRGVbxRkhuQJSGlFKUaBVNRAFoFkdAjTIQIdELIHV9lChoBmgJaA9DCC/BqQ8kSnJAlIaUUpRoFU0nAWgWR0CNMoy8BdUsdX2UKGgGaAloD0MIBtSbUXP4ckCUhpRSlGgVTVkBaBZHQI0yWW2PT5R1fZQoaAZoCWgPQwhoPuduV/hyQJSGlFKUaBVNEQFoFkdAjTLdOZb6g3V9lChoBmgJaA9DCMlVLH5TV3JAlIaUUpRoFU0fAWgWR0CNM0wMYuTSdX2UKGgGaAloD0MI9L9ci5bLcECUhpRSlGgVTboBaBZHQI03y3VkMCt1fZQoaAZoCWgPQwjVWwNbJVFuQJSGlFKUaBVL9mgWR0CNOfQ0oBq9dX2UKGgGaAloD0MI8s02N6auVECUhpRSlGgVS7JoFkdAjToGKhtcfXV9lChoBmgJaA9DCOSeru4YI3JAlIaUUpRoFUv2aBZHQI07EgfU4Jh1fZQoaAZoCWgPQwiS5/o+XJtyQJSGlFKUaBVNGwFoFkdAjTtec6Nly3V9lChoBmgJaA9DCFSnA1mP0HBAlIaUUpRoFUvXaBZHQI07hsj3VTd1fZQoaAZoCWgPQwg+527XywFwQJSGlFKUaBVL32gWR0CNPCJoCdSVdX2UKGgGaAloD0MIBtodUozecUCUhpRSlGgVTSwBaBZHQI08+doWYWt1fZQoaAZoCWgPQwgNN+Dzw/RwQJSGlFKUaBVL7mgWR0CNPawyqMm4dX2UKGgGaAloD0MIw5rKovCSckCUhpRSlGgVS+poFkdAjT7vikwevXV9lChoBmgJaA9DCDoi36VUDG5AlIaUUpRoFUvzaBZHQI1AJSYPXkJ1fZQoaAZoCWgPQwhNZyeD4x1wQJSGlFKUaBVL9WgWR0CNQMnNxEORdX2UKGgGaAloD0MI2T15WKgGcECUhpRSlGgVTQoBaBZHQI1BE3EQ5FR1fZQoaAZoCWgPQwiFsvD1dT1zQJSGlFKUaBVNLwFoFkdAjUJIsyzolnV9lChoBmgJaA9DCLPqc7VVw3BAlIaUUpRoFU00AWgWR0CNQtC3w1BMdX2UKGgGaAloD0MIyhXe5aIGckCUhpRSlGgVS9FoFkdAjUOwyRB/qnV9lChoBmgJaA9DCDnv/+NELXBAlIaUUpRoFUvcaBZHQI1F8yYXwb51fZQoaAZoCWgPQwhJ10y+GVFxQJSGlFKUaBVL2WgWR0CNRrhttQ9BdX2UKGgGaAloD0MIR8mrc8zPckCUhpRSlGgVS9loFkdAjUe5rgwXZXV9lChoBmgJaA9DCAiQoWOHQ3FAlIaUUpRoFUvraBZHQI1J71RLsa91fZQoaAZoCWgPQwjIJCNnYQ9FQJSGlFKUaBVLs2gWR0CNSuJ+lTFVdX2UKGgGaAloD0MI3PY96i8+c0CUhpRSlGgVTRoBaBZHQI1LG4gA6uJ1fZQoaAZoCWgPQwhq+1dWGrBxQJSGlFKUaBVL92gWR0CNS2biqABldX2UKGgGaAloD0MIMBNFSJ0AcUCUhpRSlGgVTUcBaBZHQI1MOOlwcYJ1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 248,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}