shishirAI commited on
Commit
9976fa0
·
1 Parent(s): 0cb0bfa

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +157 -0
README.md ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+
3
+ language: ne
4
+ datasets:
5
+ - OpenSLR
6
+ - common_voice
7
+ metrics:
8
+ - wer
9
+ tags:
10
+ - audio
11
+ - automatic-speech-recognition
12
+ - speech
13
+ - xlsr-fine-tuning-week
14
+ license: apache-2.0
15
+ model-index:
16
+ - name: wav2vec2-xlsr-nepali
17
+ results:
18
+ - task:
19
+ name: Speech Recognition
20
+ type: automatic-speech-recognition
21
+ dataset:
22
+ name: OpenSLR ne
23
+ type: OpenSLR
24
+ args: ne
25
+ metrics:
26
+ - name: Test WER
27
+ type: wer
28
+ value: 05.97
29
+ ---
30
+
31
+ # Wav2Vec2-Large-XLSR-53-Nepali
32
+
33
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Nepali using the [Common Voice](https://huggingface.co/datasets/common_voice), and [OpenSLR ne](http://www.openslr.org/43/).
34
+
35
+ When using this model, make sure that your speech input is sampled at 16kHz.
36
+
37
+ ## Usage
38
+
39
+ The model can be used directly (without a language model) as follows:
40
+
41
+ ```python
42
+ import torch
43
+ import torchaudio
44
+ from datasets import load_dataset
45
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
46
+
47
+ !wget https://www.openslr.org/resources/43/ne_np_female.zip
48
+ !unzip ne_np_female.zip
49
+ !ls ne_np_female
50
+
51
+ colnames=['path','sentence']
52
+ df = pd.read_csv('/content/ne_np_female/line_index.tsv',sep='\\t',header=None,names = colnames)
53
+ df['path'] = '/content/ne_np_female/wavs/'+df['path'] +'.wav'
54
+
55
+ train, test = train_test_split(df, test_size=0.1)
56
+
57
+ test.to_csv('/content/ne_np_female/line_index_test.csv')
58
+
59
+ test_dataset = load_dataset('csv', data_files='/content/ne_np_female/line_index_test.csv',split = 'train')
60
+
61
+ processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
62
+ model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
63
+
64
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
65
+
66
+ # Preprocessing the datasets.
67
+ # We need to read the aduio files as arrays
68
+ def speech_file_to_array_fn(batch):
69
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
70
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
71
+ \treturn batch
72
+
73
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
74
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
75
+
76
+ with torch.no_grad():
77
+ \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
78
+
79
+ predicted_ids = torch.argmax(logits, dim=-1)
80
+
81
+ print("Prediction:", processor.batch_decode(predicted_ids))
82
+ print("Reference:", test_dataset["sentence"][:2])
83
+
84
+ ```
85
+ #### Result
86
+
87
+ Prediction: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ']
88
+
89
+ Reference: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ']
90
+
91
+ ## Evaluation
92
+
93
+ The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French
94
+
95
+
96
+ ```python
97
+ import torch
98
+ import torchaudio
99
+ from datasets import load_dataset, load_metric
100
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
101
+ import re
102
+
103
+ !wget https://www.openslr.org/resources/43/ne_np_female.zip
104
+ !unzip ne_np_female.zip
105
+ !ls ne_np_female
106
+
107
+ colnames=['path','sentence']
108
+ df = pd.read_csv('/content/ne_np_female/line_index.tsv',sep='\\t',header=None,names = colnames)
109
+ df['path'] = '/content/ne_np_female/wavs/'+df['path'] +'.wav'
110
+
111
+ train, test = train_test_split(df, test_size=0.1)
112
+
113
+ test.to_csv('/content/ne_np_female/line_index_test.csv')
114
+
115
+ test_dataset = load_dataset('csv', data_files='/content/ne_np_female/line_index_test.csv',split = 'train')
116
+ wer = load_metric("wer")
117
+
118
+ processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
119
+ model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
120
+ model.to("cuda")
121
+
122
+ chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]'
123
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
124
+
125
+ # Preprocessing the datasets.
126
+ # We need to read the aduio files as arrays
127
+ def speech_file_to_array_fn(batch):
128
+ \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
129
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
130
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
131
+ \treturn batch
132
+
133
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
134
+
135
+ # Preprocessing the datasets.
136
+ # We need to read the aduio files as arrays
137
+ def evaluate(batch):
138
+ \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
139
+
140
+ \twith torch.no_grad():
141
+ \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
142
+
143
+ \tpred_ids = torch.argmax(logits, dim=-1)
144
+ \tbatch["pred_strings"] = processor.batch_decode(pred_ids)
145
+ \treturn batch
146
+
147
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
148
+
149
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
150
+
151
+ ```
152
+
153
+ **Test Result**: 05.97 %
154
+
155
+ ## Training
156
+
157
+ The script used for training can be found [here](https://colab.research.google.com/drive/1AHnYWXb5cwfMEa2o4O3TSdasAR3iVBFP?usp=sharing)