shibing624 commited on
Commit
b606b56
1 Parent(s): 630e10f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -7
README.md CHANGED
@@ -11,7 +11,7 @@ datasets:
11
  language:
12
  - zh
13
  metrics:
14
- - bleu
15
  library_name: transformers
16
  ---
17
  # shibing624/text2vec-base-chinese
@@ -26,12 +26,24 @@ For an automated evaluation of this model, see the *Evaluation Benchmark*: [text
26
 
27
  - chinese text matching task:
28
 
29
- | Model Name | ATEC | BQ | LCQMC | PAWSX | STS-B | Avg | QPS |
30
- | :---- | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
31
- | w2v-light-tencent-chinese | 20.00 | 31.49 | 59.46 | 2.57 | 55.78 | 33.86 | 10283 |
32
- | paraphrase-multilingual-MiniLM-L12-v2 | 18.42 | 38.52 | 63.96 | 10.14 | 78.90 | 41.99 | 2371 |
33
- | text2vec-base-chinese | 31.93 | 42.67 | 70.16 | 17.21 | 79.30 | **48.25** | 2572 |
34
-
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  ## Usage (text2vec)
37
  Using this model becomes easy when you have [text2vec](https://github.com/shibing624/text2vec) installed:
@@ -117,6 +129,37 @@ CoSENT(
117
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_mean_tokens': True})
118
  )
119
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
  ## Citing & Authors
121
  This model was trained by [text2vec](https://github.com/shibing624/text2vec).
122
 
 
11
  language:
12
  - zh
13
  metrics:
14
+ - spearmanr
15
  library_name: transformers
16
  ---
17
  # shibing624/text2vec-base-chinese
 
26
 
27
  - chinese text matching task:
28
 
29
+ | Arch | BaseModel | Model | ATEC | BQ | LCQMC | PAWSX | STS-B | SOHU-dd | SOHU-dc | Avg | QPS |
30
+ |:-----------|:----------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------|:-----:|:-----:|:-----:|:-----:|:-----:|:-------:|:-------:|:---------:|:-----:|
31
+ | Word2Vec | word2vec | [w2v-light-tencent-chinese](https://ai.tencent.com/ailab/nlp/en/download.html) | 20.00 | 31.49 | 59.46 | 2.57 | 55.78 | 55.04 | 20.70 | 35.03 | 23769 |
32
+ | SBERT | xlm-roberta-base | [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) | 18.42 | 38.52 | 63.96 | 10.14 | 78.90 | 63.01 | 52.28 | 46.46 | 3138 |
33
+ | Instructor | hfl/chinese-roberta-wwm-ext | [moka-ai/m3e-base](https://huggingface.co/moka-ai/m3e-base) | 41.27 | 63.81 | 74.87 | 12.20 | 76.96 | 75.83 | 60.55 | 57.93 | 2980 |
34
+ | CoSENT | hfl/chinese-macbert-base | [shibing624/text2vec-base-chinese](https://huggingface.co/shibing624/text2vec-base-chinese) | 31.93 | 42.67 | 70.16 | 17.21 | 79.30 | 70.27 | 50.42 | 51.61 | 3008 |
35
+ | CoSENT | hfl/chinese-lert-large | [GanymedeNil/text2vec-large-chinese](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 32.61 | 44.59 | 69.30 | 14.51 | 79.44 | 73.01 | 59.04 | 53.12 | 2092 |
36
+ | CoSENT | nghuyong/ernie-3.0-base-zh | [shibing624/text2vec-base-chinese-sentence](https://huggingface.co/shibing624/text2vec-base-chinese-sentence) | 43.37 | 61.43 | 73.48 | 38.90 | 78.25 | 70.60 | 53.08 | 59.87 | 3089 |
37
+ | CoSENT | nghuyong/ernie-3.0-base-zh | [shibing624/text2vec-base-chinese-paraphrase](https://huggingface.co/shibing624/text2vec-base-chinese-paraphrase) | 44.89 | 63.58 | 74.24 | 40.90 | 78.93 | 76.70 | 63.30 | 63.08 | 3066 |
38
+
39
+
40
+ 说明:
41
+ - 结果评测指标:spearman系数
42
+ - `shibing624/text2vec-base-chinese`模型,是用CoSENT方法训练,基于`hfl/chinese-macbert-base`在中文STS-B数据训练得到,并在中文STS-B测试集评估达到较好效果,运行[examples/training_sup_text_matching_model.py](https://github.com/shibing624/text2vec/blob/master/examples/training_sup_text_matching_model.py)代码可训练模型,模型文件已经上传HF model hub,中文通用语义匹配任务推荐使用
43
+ - `shibing624/text2vec-base-chinese-sentence`模型,是用CoSENT方法训练,基于`nghuyong/ernie-3.0-base-zh`用人工挑选后的中文STS数据集[shibing624/nli-zh-all/text2vec-base-chinese-sentence-dataset](https://huggingface.co/datasets/shibing624/nli-zh-all/tree/main/text2vec-base-chinese-sentence-dataset)训练得到,并在中文各NLI测试集评估达到较好效果,运行[examples/training_sup_text_matching_model_jsonl_data.py](https://github.com/shibing624/text2vec/blob/master/examples/training_sup_text_matching_model_jsonl_data.py)代码可训练模型,模型文件已经上传HF model hub,中文s2s(句子vs句子)语义匹配任务推荐使用
44
+ - `shibing624/text2vec-base-chinese-paraphrase`模型,是用CoSENT方法训练,基于`nghuyong/ernie-3.0-base-zh`用人工挑选后的中文STS数据集[shibing624/nli-zh-all/text2vec-base-chinese-paraphrase-dataset](https://huggingface.co/datasets/shibing624/nli-zh-all/tree/main/text2vec-base-chinese-paraphrase-dataset),数据集相对于[shibing624/nli-zh-all/text2vec-base-chinese-sentence-dataset](https://huggingface.co/datasets/shibing624/nli-zh-all/tree/main/text2vec-base-chinese-sentence-dataset)加入了s2p(sentence to paraphrase)数据,强化了其长文本的表征能力,并在中文各NLI测试集评估达到SOTA,运行[examples/training_sup_text_matching_model_jsonl_data.py](https://github.com/shibing624/text2vec/blob/master/examples/training_sup_text_matching_model_jsonl_data.py)代码可训练模型,模型文件已经上传HF model hub,中文s2p(句子vs段落)语义匹配任务推荐使用
45
+ - `sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2`模型是用SBERT训练,是`paraphrase-MiniLM-L12-v2`模型的多语言版本,支持中文、英文等
46
+ - `w2v-light-tencent-chinese`是腾讯词向量的Word2Vec模型,CPU加载使用,适用于中文字面匹配任务和缺少数据的冷启动情况
47
 
48
  ## Usage (text2vec)
49
  Using this model becomes easy when you have [text2vec](https://github.com/shibing624/text2vec) installed:
 
129
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_mean_tokens': True})
130
  )
131
  ```
132
+
133
+ ## Intended uses
134
+
135
+ Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures
136
+ the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
137
+
138
+ By default, input text longer than 256 word pieces is truncated.
139
+
140
+
141
+ ## Training procedure
142
+
143
+ ### Pre-training
144
+
145
+ We use the pretrained [`hfl/chinese-macbert-base`](https://huggingface.co/hfl/chinese-macbert-base) model.
146
+ Please refer to the model card for more detailed information about the pre-training procedure.
147
+
148
+ ### Fine-tuning
149
+
150
+ We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each
151
+ possible sentence pairs from the batch.
152
+ We then apply the rank loss by comparing with true pairs and false pairs.
153
+
154
+ #### Hyper parameters
155
+
156
+ - training dataset: https://huggingface.co/datasets/shibing624/nli_zh
157
+ - max_seq_length: 218
158
+ - best epoch: 5
159
+ - sentence embedding dim: 768
160
+
161
+
162
+
163
  ## Citing & Authors
164
  This model was trained by [text2vec](https://github.com/shibing624/text2vec).
165