shibing624 commited on
Commit
2f0ed03
1 Parent(s): 3ad56e7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +104 -160
README.md CHANGED
@@ -1,202 +1,146 @@
1
  ---
2
  library_name: peft
3
  base_model: Qwen/Qwen2.5-7B-Instruct
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
 
 
 
 
 
 
18
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
35
 
36
- ## Uses
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
 
 
 
 
39
 
40
- ### Direct Use
 
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
49
 
50
- [More Information Needed]
 
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
61
 
62
- [More Information Needed]
 
 
 
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
 
 
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
 
 
 
 
 
 
 
 
71
 
72
- Use the code below to get started with the model.
 
73
 
74
- [More Information Needed]
75
 
76
- ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
  ### Framework versions
201
 
202
  - PEFT 0.11.1
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: peft
3
  base_model: Qwen/Qwen2.5-7B-Instruct
4
+ license: apache-2.0
5
+ datasets:
6
+ - shibing624/chinese_text_correction
7
+ language:
8
+ - zh
9
+ metrics:
10
+ - f1
11
+ tags:
12
+ - text-generation-inference
13
+ widget:
14
+ - text: "文本纠错:\n少先队员因该为老人让坐。"
15
  ---
16
 
 
17
 
 
18
 
19
+ # Chinese Text Correction Model
20
+ 中文文本纠错模型chinese-text-correction-7b-lora:用于拼写纠错、语法纠错
21
 
22
+ `shibing624/chinese-text-correction-7b-lora` evaluate test data:
23
 
24
+ The overall performance of CSC **test**:
25
 
26
+ |input_text|predict_text|
27
+ |:--- |:--- |
28
+ |文本纠错:\n少先队员因该为老人让坐。|少先队员应该为老人让座。|
29
 
30
+ # Models
31
 
32
+ | Name | Base Model | Download |
33
+ |-----------------|-------------------|-----------------------------------------------------------------------|
34
+ | chinese-text-correction-1.5b | Qwen/Qwen2.5-1.5B-Instruct | [🤗 Hugging Face](https://huggingface.co/shibing624/chinese-text-correction-1.5b) |
35
+ | chinese-text-correction-1.5b-lora | Qwen/Qwen2.5-1.5B-Instruct | [🤗 Hugging Face](https://huggingface.co/shibing624/chinese-text-correction-1.5b-lora) |
36
+ | chinese-text-correction-7b | Qwen/Qwen2.5-7B-Instruct | [🤗 Hugging Face](https://huggingface.co/shibing624/chinese-text-correction-7b) |
37
+ | chinese-text-correction-7b-lora | Qwen/Qwen2.5-7B-Instruct | [🤗 Hugging Face](https://huggingface.co/shibing624/chinese-text-correction-7b-lora) |
38
 
39
 
 
 
 
 
 
 
 
40
 
41
+ ## Usage (pycorrector)
42
 
43
+ 本项目开源在`pycorrector`项目:[pycorrector](https://github.com/shibing624/pycorrector),可支持大模型微调后用于文本纠错,通过如下命令调用:
44
 
45
+ Install package:
46
+ ```shell
47
+ pip install -U pycorrector
48
+ ```
49
 
50
+ ```python
51
+ from pycorrector.gpt.gpt_corrector import GptCorrector
52
 
53
+ if __name__ == '__main__':
54
+ error_sentences = [
55
+ '真麻烦你了。希望你们好好的跳无',
56
+ '少先队员因该为老人让坐',
57
+ '机七学习是人工智能领遇最能体现智能的一个分知',
58
+ '一只小鱼船浮在平净的河面上',
59
+ '我的家乡是有明的渔米之乡',
60
+ ]
61
+ m = GptCorrector("shibing624/chinese-text-correction-7b")
62
 
63
+ batch_res = m.correct_batch(error_sentences)
64
+ for i in batch_res:
65
+ print(i)
66
+ print()
67
+ ```
68
 
69
+ ## Usage (HuggingFace Transformers)
70
+ Without [pycorrector](https://github.com/shibing624/pycorrector), you can use the model like this:
71
 
72
+ First, you pass your input through the transformer model, then you get the generated sentence.
73
 
74
+ Install package:
75
+ ```
76
+ pip install transformers
77
+ ```
78
 
79
+ ```python
80
+ # pip install transformers
81
+ from transformers import AutoModelForCausalLM, AutoTokenizer
82
+ checkpoint = "shibing624/chinese-text-correction-7b"
83
 
84
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
85
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
86
+ model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
87
 
88
+ input_content = "文本纠错:\n少先队员因该为老人让坐。"
89
 
90
+ messages = [{"role": "user", "content": input_content}]
91
+ input_text=tokenizer.apply_chat_template(messages, tokenize=False)
92
 
93
+ print(input_text)
94
 
95
+ inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
96
+ outputs = model.generate(inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08)
97
 
98
+ print(tokenizer.decode(outputs[0]))
99
+ ```
100
 
101
+ output:
102
+ ```shell
103
+ 少先队员应该为老人让座。
104
+ ```
105
 
 
106
 
107
+ 模型文件组成:
108
+ ```
109
+ shibing624/chinese-text-correction-7b-lora
110
+ ├── adapter_config.json
111
+ └── adapter_model.safetensors
112
+ ```
113
 
114
+ #### 训练参数:
115
 
116
+ - num_epochs: 8
117
+ - batch_size: 2
118
+ - steps: 36000
119
+ - eval_loss: 0.12
120
+ - base model: Qwen/Qwen2.5-7B-Instruct
121
+ - train data: [shibing624/chinese_text_correction](https://huggingface.co/datasets/shibing624/chinese_text_correction)
122
+ - train time: 9 days 8 hours
123
+ - eval_loss: ![](https://huggingface.co/shibing624/chinese-text-correction-7b-lora/resolve/main/eval_loss_7b.png)
124
+ - train_loss: ![](https://huggingface.co/shibing624/chinese-text-correction-7b-lora/resolve/main/train_loss_7b.png)
125
 
126
+ ### 训练数据集
127
+ #### 中文纠错数据集
128
 
129
+ - 数据:[shibing624/chinese_text_correction](https://huggingface.co/datasets/shibing624/chinese_text_correction)
130
 
131
+ 如果需要训练Qwen的纠错模型,请参考[https://github.com/shibing624/pycorrector](https://github.com/shibing624/pycorrector) 或者 [https://github.com/shibing624/MedicalGPT](https://github.com/shibing624/MedicalGPT)
132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133
  ### Framework versions
134
 
135
  - PEFT 0.11.1
136
+
137
+ ## Citation
138
+
139
+ ```latex
140
+ @software{pycorrector,
141
+ author = {Xu Ming},
142
+ title = {pycorrector: Implementation of language model finetune},
143
+ year = {2024},
144
+ url = {https://github.com/shibing624/pycorrector},
145
+ }
146
+ ```