patrickvonplaten
commited on
Commit
·
be7e653
1
Parent(s):
364c933
add diffusion models
Browse files- README.md +90 -16
- image_encoder/config.json +23 -0
- image_encoder/pytorch_model.bin +3 -0
- image_feature_extractor/preprocessor_config.json +28 -0
- image_unet/config.json +36 -0
- image_unet/diffusion_pytorch_model.bin +3 -0
- model_index.json +36 -0
- scheduler/scheduler_config.json +13 -0
- text_encoder/config.json +25 -0
- text_encoder/pytorch_model.bin +3 -0
- text_unet/config.json +44 -0
- text_unet/diffusion_pytorch_model.bin +3 -0
- tokenizer/merges.txt +0 -0
- tokenizer/special_tokens_map.json +24 -0
- tokenizer/tokenizer_config.json +34 -0
- tokenizer/vocab.json +0 -0
- vae/config.json +29 -0
- vae/diffusion_pytorch_model.bin +3 -0
README.md
CHANGED
@@ -9,15 +9,18 @@ tags:
|
|
9 |
- vision
|
10 |
datasets:
|
11 |
- Laion2B-en
|
|
|
|
|
|
|
12 |
---
|
13 |
|
14 |
-
# Versatile Diffusion
|
15 |
|
16 |
We built **Versatile Diffusion (VD), the first unified multi-flow multimodal diffusion framework**, as a step towards **Universal Generative AI**. Versatile Diffusion can natively support image-to-text, image-variation, text-to-image, and text-variation, and can be further extended to other applications such as semantic-style disentanglement, image-text dual-guided generation, latent image-to-text-to-image editing, and more. Future versions will support more modalities such as speech, music, video and 3D.
|
17 |
|
18 |
Resources for more information: [GitHub](https://github.com/SHI-Labs/Versatile-Diffusion), [arXiv](https://arxiv.org/abs/2211.08332).
|
19 |
|
20 |
-
# Model
|
21 |
|
22 |
One single flow of Versatile Diffusion contains a VAE, a diffuser, and a context encoder, and thus handles one task (e.g., text-to-image) under one data type (e.g., image) and one context type (e.g., text). The multi-flow structure of Versatile Diffusion shows in the following diagram:
|
23 |
|
@@ -25,22 +28,93 @@ One single flow of Versatile Diffusion contains a VAE, a diffuser, and a context
|
|
25 |
<img src="https://huggingface.co/shi-labs/versatile-diffusion-model/resolve/main/assets/figures/VD_framework.png" width="99%">
|
26 |
</p>
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
|
|
|
|
33 |
|
34 |
-
|
|
|
35 |
|
|
|
|
|
36 |
```
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
9 |
- vision
|
10 |
datasets:
|
11 |
- Laion2B-en
|
12 |
+
widget:
|
13 |
+
- text: "A high tech solarpunk utopia in the Amazon rainforest"
|
14 |
+
example_title: Amazon rainforest
|
15 |
---
|
16 |
|
17 |
+
# Versatile Diffusion V1.0 Model Card
|
18 |
|
19 |
We built **Versatile Diffusion (VD), the first unified multi-flow multimodal diffusion framework**, as a step towards **Universal Generative AI**. Versatile Diffusion can natively support image-to-text, image-variation, text-to-image, and text-variation, and can be further extended to other applications such as semantic-style disentanglement, image-text dual-guided generation, latent image-to-text-to-image editing, and more. Future versions will support more modalities such as speech, music, video and 3D.
|
20 |
|
21 |
Resources for more information: [GitHub](https://github.com/SHI-Labs/Versatile-Diffusion), [arXiv](https://arxiv.org/abs/2211.08332).
|
22 |
|
23 |
+
# Model Details
|
24 |
|
25 |
One single flow of Versatile Diffusion contains a VAE, a diffuser, and a context encoder, and thus handles one task (e.g., text-to-image) under one data type (e.g., image) and one context type (e.g., text). The multi-flow structure of Versatile Diffusion shows in the following diagram:
|
26 |
|
|
|
28 |
<img src="https://huggingface.co/shi-labs/versatile-diffusion-model/resolve/main/assets/figures/VD_framework.png" width="99%">
|
29 |
</p>
|
30 |
|
31 |
+
- **Developed by:** Xingqian Xu, Atlas Wang, Eric Zhang, Kai Wang, and Humphrey Shi
|
32 |
+
- **Model type:** Diffusion-based multimodal generation model
|
33 |
+
- **Language(s):** English
|
34 |
+
- **License:** MIT
|
35 |
+
- **Resources for more information:** [GitHub Repository](https://github.com/SHI-Labs/Versatile-Diffusion), [Paper](https://arxiv.org/abs/2211.08332).
|
36 |
+
- **Cite as:**
|
37 |
+
```
|
38 |
+
@article{xu2022versatile,
|
39 |
+
title = {Versatile Diffusion: Text, Images and Variations All in One Diffusion Model},
|
40 |
+
author = {Xingqian Xu, Zhangyang Wang, Eric Zhang, Kai Wang, Humphrey Shi},
|
41 |
+
year = 2022,
|
42 |
+
url = {https://arxiv.org/abs/2211.08332},
|
43 |
+
eprint = {2211.08332},
|
44 |
+
archiveprefix = {arXiv},
|
45 |
+
primaryclass = {cs.CV}
|
46 |
+
}
|
47 |
+
```
|
48 |
|
49 |
+
You can use the model both with the [🧨Diffusers library](https://github.com/huggingface/diffusers) and the [SHI-Labs Versatile Diffusion codebase](https://github.com/SHI-Labs/Versatile-Diffusion).
|
50 |
+
|
51 |
+
### Diffusers
|
52 |
+
#### Text to Image
|
53 |
+
```py
|
54 |
+
from diffusers import VersatileDiffusionTextToImagePipeline
|
55 |
+
import torch
|
56 |
+
|
57 |
+
pipe = VersatileDiffusionTextToImagePipeline.from_pretrained("diffusers/vd-official-test", torch_dtype=torch.float16)
|
58 |
+
pipe.remove_unused_weights()
|
59 |
+
pipe = pipe.to("cuda")
|
60 |
+
|
61 |
+
generator = torch.Generator(device="cuda").manual_seed(0)
|
62 |
+
image = pipe("an astronaut riding on a horse on mars", generator=generator).images[0]
|
63 |
+
image.save("./astronaut.png")
|
64 |
+
```
|
65 |
+
#### Image variations
|
66 |
+
```py
|
67 |
+
from diffusers import VersatileDiffusionImageVariationPipeline
|
68 |
+
import torch
|
69 |
+
import requests
|
70 |
+
from io import BytesIO
|
71 |
+
from PIL import Image
|
72 |
+
|
73 |
+
# download an initial image
|
74 |
+
url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg"
|
75 |
+
response = requests.get(url)
|
76 |
+
image = Image.open(BytesIO(response.content)).convert("RGB")
|
77 |
+
|
78 |
+
pipe = VersatileDiffusionImageVariationPipeline.from_pretrained("diffusers/vd-official-test", torch_dtype=torch.float16)
|
79 |
+
pipe = pipe.to("cuda")
|
80 |
+
|
81 |
+
generator = torch.Generator(device="cuda").manual_seed(0)
|
82 |
+
image = pipe(image, generator=generator).images[0]
|
83 |
+
image.save("./car_variation.png")
|
84 |
+
```
|
85 |
+
#### Dual-guided generation
|
86 |
+
```py
|
87 |
+
from diffusers import VersatileDiffusionImageVariationPipeline
|
88 |
+
import torch
|
89 |
+
import requests
|
90 |
+
from io import BytesIO
|
91 |
+
from PIL import Image
|
92 |
+
|
93 |
+
# download an initial image
|
94 |
+
url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg"
|
95 |
+
|
96 |
+
response = requests.get(url)
|
97 |
+
image = Image.open(BytesIO(response.content)).convert("RGB")
|
98 |
+
text = "a red car in the sun"
|
99 |
|
100 |
+
pipe = VersatileDiffusionImageVariationPipeline.from_pretrained("diffusers/vd-official-test", torch_dtype=torch.float16)
|
101 |
+
pipe.remove_unused_weights()
|
102 |
+
pipe = pipe.to("cuda")
|
103 |
|
104 |
+
generator = torch.Generator(device="cuda").manual_seed(0)
|
105 |
+
text_to_image_strength = 0.75
|
106 |
|
107 |
+
image = pipe(prompt=text, image=image, text_to_image_strength=text_to_image_strength, generator=generator).images[0]
|
108 |
+
image.save("./red_car.png")
|
109 |
```
|
110 |
+
|
111 |
+
### Original GitHub Repository
|
112 |
+
|
113 |
+
Follow the instructions [here](https://github.com/SHI-Labs/Versatile-Diffusion/#evaluation).
|
114 |
+
|
115 |
+
|
116 |
+
# Cautions, Biases, and Content Acknowledgment
|
117 |
+
|
118 |
+
We would like the raise the awareness of users of this demo of its potential issues and concerns. Like previous large foundation models, Versatile Diffusion could be problematic in some cases, partially due to the imperfect training data and pretrained network (VAEs / context encoders) with limited scope. In its future research phase, VD may do better on tasks such as text-to-image, image-to-text, etc., with the help of more powerful VAEs, more sophisticated network designs, and more cleaned data. So far, we have kept all features available for research testing both to show the great potential of the VD framework and to collect important feedback to improve the model in the future. We welcome researchers and users to report issues with the HuggingFace community discussion feature or email the authors.
|
119 |
+
|
120 |
+
Beware that VD may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography, and violence. VD was trained on the LAION-2B dataset, which scraped non-curated online images and text, and may contain unintended exceptions as we removed illegal content. VD in this demo is meant only for research purposes.
|
image_encoder/config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "openai/clip-vit-large-patch14",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPVisionModelWithProjection"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"dropout": 0.0,
|
8 |
+
"hidden_act": "quick_gelu",
|
9 |
+
"hidden_size": 1024,
|
10 |
+
"image_size": 224,
|
11 |
+
"initializer_factor": 1.0,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 4096,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"model_type": "clip_vision_model",
|
16 |
+
"num_attention_heads": 16,
|
17 |
+
"num_channels": 3,
|
18 |
+
"num_hidden_layers": 24,
|
19 |
+
"patch_size": 14,
|
20 |
+
"projection_dim": 768,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.25.0.dev0"
|
23 |
+
}
|
image_encoder/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89d2aa29b5fdf64f3ad4f45fb4227ea98bc45156bbae673b85be1af7783dbabb
|
3 |
+
size 1215993967
|
image_feature_extractor/preprocessor_config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": {
|
3 |
+
"height": 224,
|
4 |
+
"width": 224
|
5 |
+
},
|
6 |
+
"do_center_crop": true,
|
7 |
+
"do_convert_rgb": true,
|
8 |
+
"do_normalize": true,
|
9 |
+
"do_rescale": true,
|
10 |
+
"do_resize": true,
|
11 |
+
"feature_extractor_type": "CLIPFeatureExtractor",
|
12 |
+
"image_mean": [
|
13 |
+
0.48145466,
|
14 |
+
0.4578275,
|
15 |
+
0.40821073
|
16 |
+
],
|
17 |
+
"image_processor_type": "CLIPImageProcessor",
|
18 |
+
"image_std": [
|
19 |
+
0.26862954,
|
20 |
+
0.26130258,
|
21 |
+
0.27577711
|
22 |
+
],
|
23 |
+
"resample": 3,
|
24 |
+
"rescale_factor": 0.00392156862745098,
|
25 |
+
"size": {
|
26 |
+
"shortest_edge": 224
|
27 |
+
}
|
28 |
+
}
|
image_unet/config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNet2DConditionModel",
|
3 |
+
"_diffusers_version": "0.8.0.dev0",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"attention_head_dim": 8,
|
6 |
+
"block_out_channels": [
|
7 |
+
320,
|
8 |
+
640,
|
9 |
+
1280,
|
10 |
+
1280
|
11 |
+
],
|
12 |
+
"center_input_sample": false,
|
13 |
+
"cross_attention_dim": 768,
|
14 |
+
"down_block_types": [
|
15 |
+
"CrossAttnDownBlock2D",
|
16 |
+
"CrossAttnDownBlock2D",
|
17 |
+
"CrossAttnDownBlock2D",
|
18 |
+
"DownBlock2D"
|
19 |
+
],
|
20 |
+
"downsample_padding": 1,
|
21 |
+
"flip_sin_to_cos": true,
|
22 |
+
"freq_shift": 0,
|
23 |
+
"in_channels": 4,
|
24 |
+
"layers_per_block": 2,
|
25 |
+
"mid_block_scale_factor": 1,
|
26 |
+
"norm_eps": 1e-05,
|
27 |
+
"norm_num_groups": 32,
|
28 |
+
"out_channels": 4,
|
29 |
+
"sample_size": null,
|
30 |
+
"up_block_types": [
|
31 |
+
"UpBlock2D",
|
32 |
+
"CrossAttnUpBlock2D",
|
33 |
+
"CrossAttnUpBlock2D",
|
34 |
+
"CrossAttnUpBlock2D"
|
35 |
+
]
|
36 |
+
}
|
image_unet/diffusion_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3899338e2c2a00a02e6ad0e33933da4fed163bf7a16187522c1019c82519cff2
|
3 |
+
size 3438354725
|
model_index.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "VersatileDiffusionPipeline",
|
3 |
+
"_diffusers_version": "0.8.0.dev0",
|
4 |
+
"image_encoder": [
|
5 |
+
"transformers",
|
6 |
+
"CLIPVisionModelWithProjection"
|
7 |
+
],
|
8 |
+
"image_feature_extractor": [
|
9 |
+
"transformers",
|
10 |
+
"CLIPImageProcessor"
|
11 |
+
],
|
12 |
+
"image_unet": [
|
13 |
+
"diffusers",
|
14 |
+
"UNet2DConditionModel"
|
15 |
+
],
|
16 |
+
"scheduler": [
|
17 |
+
"diffusers",
|
18 |
+
"DDIMScheduler"
|
19 |
+
],
|
20 |
+
"text_encoder": [
|
21 |
+
"transformers",
|
22 |
+
"CLIPTextModelWithProjection"
|
23 |
+
],
|
24 |
+
"text_unet": [
|
25 |
+
"versatile_diffusion",
|
26 |
+
"UNetFlatConditionModel"
|
27 |
+
],
|
28 |
+
"tokenizer": [
|
29 |
+
"transformers",
|
30 |
+
"CLIPTokenizer"
|
31 |
+
],
|
32 |
+
"vae": [
|
33 |
+
"diffusers",
|
34 |
+
"AutoencoderKL"
|
35 |
+
]
|
36 |
+
}
|
scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "DDIMScheduler",
|
3 |
+
"_diffusers_version": "0.6.0",
|
4 |
+
"beta_end": 0.012,
|
5 |
+
"beta_schedule": "scaled_linear",
|
6 |
+
"beta_start": 0.00085,
|
7 |
+
"num_train_timesteps": 1000,
|
8 |
+
"set_alpha_to_one": false,
|
9 |
+
"skip_prk_steps": true,
|
10 |
+
"steps_offset": 1,
|
11 |
+
"trained_betas": null,
|
12 |
+
"clip_sample": false
|
13 |
+
}
|
text_encoder/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "openai/clip-vit-large-patch14",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPTextModelWithProjection"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"dropout": 0.0,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "quick_gelu",
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_factor": 1.0,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 77,
|
17 |
+
"model_type": "clip_text_model",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"projection_dim": 768,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.25.0.dev0",
|
24 |
+
"vocab_size": 49408
|
25 |
+
}
|
text_encoder/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85f5bcf101dde33d8ab9f7e5e1678339fa4258ea07bc65e6ca66e01f9de99622
|
3 |
+
size 494664885
|
text_unet/config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNetFlatConditionModel",
|
3 |
+
"_diffusers_version": "0.8.0.dev0",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"attention_head_dim": 8,
|
6 |
+
"block_out_channels": [
|
7 |
+
320,
|
8 |
+
640,
|
9 |
+
1280,
|
10 |
+
1280
|
11 |
+
],
|
12 |
+
"center_input_sample": false,
|
13 |
+
"cross_attention_dim": 768,
|
14 |
+
"down_block_types": [
|
15 |
+
"CrossAttnDownBlockFlat",
|
16 |
+
"CrossAttnDownBlockFlat",
|
17 |
+
"CrossAttnDownBlockFlat",
|
18 |
+
"DownBlockFlat"
|
19 |
+
],
|
20 |
+
"downsample_padding": 1,
|
21 |
+
"flip_sin_to_cos": true,
|
22 |
+
"freq_shift": 0,
|
23 |
+
"in_channels": [
|
24 |
+
768,
|
25 |
+
1,
|
26 |
+
1
|
27 |
+
],
|
28 |
+
"layers_per_block": 2,
|
29 |
+
"mid_block_scale_factor": 1,
|
30 |
+
"norm_eps": 1e-05,
|
31 |
+
"norm_num_groups": 32,
|
32 |
+
"out_channels": [
|
33 |
+
768,
|
34 |
+
1,
|
35 |
+
1
|
36 |
+
],
|
37 |
+
"sample_size": null,
|
38 |
+
"up_block_types": [
|
39 |
+
"UpBlockFlat",
|
40 |
+
"CrossAttnUpBlockFlat",
|
41 |
+
"CrossAttnUpBlockFlat",
|
42 |
+
"CrossAttnUpBlockFlat"
|
43 |
+
]
|
44 |
+
}
|
text_unet/diffusion_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dab7a69b6d6f52cd90717966d93ca30d13004d0eaf2994e1f0fe526473ac827c
|
3 |
+
size 6835669073
|
tokenizer/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<|endoftext|>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": {
|
4 |
+
"__type": "AddedToken",
|
5 |
+
"content": "<|startoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false
|
10 |
+
},
|
11 |
+
"do_lower_case": true,
|
12 |
+
"eos_token": {
|
13 |
+
"__type": "AddedToken",
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": true,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"errors": "replace",
|
21 |
+
"model_max_length": 77,
|
22 |
+
"name_or_path": "openai/clip-vit-large-patch14",
|
23 |
+
"pad_token": "<|endoftext|>",
|
24 |
+
"special_tokens_map_file": "./special_tokens_map.json",
|
25 |
+
"tokenizer_class": "CLIPTokenizer",
|
26 |
+
"unk_token": {
|
27 |
+
"__type": "AddedToken",
|
28 |
+
"content": "<|endoftext|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
}
|
34 |
+
}
|
tokenizer/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
vae/config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderKL",
|
3 |
+
"_diffusers_version": "0.8.0.dev0",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"block_out_channels": [
|
6 |
+
128,
|
7 |
+
256,
|
8 |
+
512,
|
9 |
+
512
|
10 |
+
],
|
11 |
+
"down_block_types": [
|
12 |
+
"DownEncoderBlock2D",
|
13 |
+
"DownEncoderBlock2D",
|
14 |
+
"DownEncoderBlock2D",
|
15 |
+
"DownEncoderBlock2D"
|
16 |
+
],
|
17 |
+
"in_channels": 3,
|
18 |
+
"latent_channels": 4,
|
19 |
+
"layers_per_block": 2,
|
20 |
+
"norm_num_groups": 32,
|
21 |
+
"out_channels": 3,
|
22 |
+
"sample_size": 256,
|
23 |
+
"up_block_types": [
|
24 |
+
"UpDecoderBlock2D",
|
25 |
+
"UpDecoderBlock2D",
|
26 |
+
"UpDecoderBlock2D",
|
27 |
+
"UpDecoderBlock2D"
|
28 |
+
]
|
29 |
+
}
|
vae/diffusion_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b134cded8eb78b184aefb8805b6b572f36fa77b255c483665dda931fa0130c5
|
3 |
+
size 334707217
|