nielsr HF staff commited on
Commit
8ed649d
·
1 Parent(s): 9235354

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -42,19 +42,19 @@ processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_cityscapes_sw
42
  model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_cityscapes_swin_large")
43
 
44
  # Semantic Segmentation
45
- semantic_inputs = processor(images=image, ["semantic"] return_tensors="pt")
46
  semantic_outputs = model(**semantic_inputs)
47
  # pass through image_processor for postprocessing
48
  predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
49
 
50
  # Instance Segmentation
51
- instance_inputs = processor(images=image, ["instance"] return_tensors="pt")
52
  instance_outputs = model(**instance_inputs)
53
  # pass through image_processor for postprocessing
54
  predicted_instance_map = processor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]
55
 
56
  # Panoptic Segmentation
57
- panoptic_inputs = processor(images=image, ["panoptic"] return_tensors="pt")
58
  panoptic_outputs = model(**panoptic_inputs)
59
  # pass through image_processor for postprocessing
60
  predicted_semantic_map = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]
 
42
  model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_cityscapes_swin_large")
43
 
44
  # Semantic Segmentation
45
+ semantic_inputs = processor(images=image, task_inputs=["semantic"], return_tensors="pt")
46
  semantic_outputs = model(**semantic_inputs)
47
  # pass through image_processor for postprocessing
48
  predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
49
 
50
  # Instance Segmentation
51
+ instance_inputs = processor(images=image, task_inputs=["instance"], return_tensors="pt")
52
  instance_outputs = model(**instance_inputs)
53
  # pass through image_processor for postprocessing
54
  predicted_instance_map = processor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]
55
 
56
  # Panoptic Segmentation
57
+ panoptic_inputs = processor(images=image, task_inputs=["panoptic"], return_tensors="pt")
58
  panoptic_outputs = model(**panoptic_inputs)
59
  # pass through image_processor for postprocessing
60
  predicted_semantic_map = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]