praeclarumjj3 commited on
Commit
218c16b
·
1 Parent(s): c0932f6

Add documentation

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md CHANGED
@@ -9,3 +9,66 @@ widget:
9
  - src: https://huggingface.co/datasets/shi-labs/oneformer_demo/blob/main/cityscapes.png
10
  example_title: Cityscapes
11
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  - src: https://huggingface.co/datasets/shi-labs/oneformer_demo/blob/main/cityscapes.png
10
  example_title: Cityscapes
11
  ---
12
+
13
+ # OneFormer
14
+
15
+ OneFormer model trained on the Cityscapes dataset (tinylarge-sized version, Swin backbone). It was introduced in the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jain et al. and first released in [this repository](https://github.com/SHI-Labs/OneFormer).
16
+
17
+ ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/oneformer_teaser.png)
18
+
19
+ ## Model description
20
+
21
+ OneFormer is the first multi-task universal image segmentation framework based on transformers. OneFormer needs to be trained only once with a single universal architecture, a single model, and on a single dataset, to outperform existing frameworks across semantic, instance, and panoptic segmentation tasks. OneFormer uses a task token to condition the model on the task in focus, making the architecture task-guided for training, and task-dynamic for inference, all with a single model.
22
+
23
+ ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/oneformer_architecture.png)
24
+
25
+ ## Intended uses & limitations
26
+
27
+ You can use this particular checkpoint for semantic, instance and panoptic segmentation. See the [model hub](https://huggingface.co/models?search=oneformer) to look for other fine-tuned versions on a different dataset.
28
+
29
+ ### How to use
30
+
31
+ Here is how to use this model:
32
+
33
+ ```python
34
+ from transformers import OneFormerFeatureExtractor, OneFormerForUniversalSegmentation
35
+ from PIL import Image
36
+ import requests
37
+ url = "https://huggingface.co/datasets/shi-labs/oneformer_demo/blob/main/cityscapes.png"
38
+ image = Image.open(requests.get(url, stream=True).raw)
39
+
40
+ # Loading a single model for all three tasks
41
+ feature_extractor = OneFormerFeatureExtractor.from_pretrained("shi-labs/oneformer_cityscapes_swin_large")
42
+ model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_cityscapes_swin_large")
43
+
44
+ # Semantic Segmentation
45
+ semantic_inputs = feature_extractor(images=image, ["semantic"] return_tensors="pt")
46
+ semantic_outputs = model(**semantic_inputs)
47
+ # pass through feature_extractor for postprocessing
48
+ predicted_semantic_map = feature_extractor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
49
+
50
+ # Instance Segmentation
51
+ instance_inputs = feature_extractor(images=image, ["instance"] return_tensors="pt")
52
+ instance_outputs = model(**instance_inputs)
53
+ # pass through feature_extractor for postprocessing
54
+ predicted_instance_map = feature_extractor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]
55
+
56
+ # Panoptic Segmentation
57
+ panoptic_inputs = feature_extractor(images=image, ["panoptic"] return_tensors="pt")
58
+ panoptic_outputs = model(**panoptic_inputs)
59
+ # pass through feature_extractor for postprocessing
60
+ predicted_semantic_map = feature_extractor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]
61
+ ```
62
+
63
+ For more examples, please refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/oneformer).
64
+
65
+ ### Citation
66
+
67
+ ```bibtex
68
+ @article{jain2022oneformer,
69
+ title={{OneFormer: One Transformer to Rule Universal Image Segmentation}},
70
+ author={Jitesh Jain and Jiachen Li and MangTik Chiu and Ali Hassani and Nikita Orlov and Humphrey Shi},
71
+ journal={arXiv},
72
+ year={2022}
73
+ }
74
+ ```