praeclarumjj3 commited on
Commit
38936f0
1 Parent(s): 5adea52

Update Readme

Browse files
Files changed (1) hide show
  1. README.md +11 -11
README.md CHANGED
@@ -35,33 +35,33 @@ You can use this particular checkpoint for semantic, instance and panoptic segme
35
  Here is how to use this model:
36
 
37
  ```python
38
- from transformers import OneFormerFeatureExtractor, OneFormerForUniversalSegmentation
39
  from PIL import Image
40
  import requests
41
  url = "https://huggingface.co/datasets/shi-labs/oneformer_demo/blob/main/ade20k.jpeg"
42
  image = Image.open(requests.get(url, stream=True).raw)
43
 
44
  # Loading a single model for all three tasks
45
- feature_extractor = OneFormerFeatureExtractor.from_pretrained("shi-labs/oneformer_ade20k_dinat_large")
46
  model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_ade20k_dinat_large")
47
 
48
  # Semantic Segmentation
49
- semantic_inputs = feature_extractor(images=image, ["semantic"] return_tensors="pt")
50
  semantic_outputs = model(**semantic_inputs)
51
- # pass through feature_extractor for postprocessing
52
- predicted_semantic_map = feature_extractor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
53
 
54
  # Instance Segmentation
55
- instance_inputs = feature_extractor(images=image, ["instance"] return_tensors="pt")
56
  instance_outputs = model(**instance_inputs)
57
- # pass through feature_extractor for postprocessing
58
- predicted_instance_map = feature_extractor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]
59
 
60
  # Panoptic Segmentation
61
- panoptic_inputs = feature_extractor(images=image, ["panoptic"] return_tensors="pt")
62
  panoptic_outputs = model(**panoptic_inputs)
63
- # pass through feature_extractor for postprocessing
64
- predicted_semantic_map = feature_extractor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]
65
  ```
66
 
67
  For more examples, please refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/oneformer).
 
35
  Here is how to use this model:
36
 
37
  ```python
38
+ from transformers import OneFormerImageProcessor, OneFormerForUniversalSegmentation
39
  from PIL import Image
40
  import requests
41
  url = "https://huggingface.co/datasets/shi-labs/oneformer_demo/blob/main/ade20k.jpeg"
42
  image = Image.open(requests.get(url, stream=True).raw)
43
 
44
  # Loading a single model for all three tasks
45
+ image_processor = OneFormerImageProcessor.from_pretrained("shi-labs/oneformer_ade20k_dinat_large")
46
  model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_ade20k_dinat_large")
47
 
48
  # Semantic Segmentation
49
+ semantic_inputs = image_processor(images=image, ["semantic"] return_tensors="pt")
50
  semantic_outputs = model(**semantic_inputs)
51
+ # pass through image_processor for postprocessing
52
+ predicted_semantic_map = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
53
 
54
  # Instance Segmentation
55
+ instance_inputs = image_processor(images=image, ["instance"] return_tensors="pt")
56
  instance_outputs = model(**instance_inputs)
57
+ # pass through image_processor for postprocessing
58
+ predicted_instance_map = image_processor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]
59
 
60
  # Panoptic Segmentation
61
+ panoptic_inputs = image_processor(images=image, ["panoptic"] return_tensors="pt")
62
  panoptic_outputs = model(**panoptic_inputs)
63
+ # pass through image_processor for postprocessing
64
+ predicted_semantic_map = image_processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]
65
  ```
66
 
67
  For more examples, please refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/oneformer).